抗菌肽对变形链球菌作用机制以及MurA靶点的研究

来源 :大连医科大学 | 被引量 : 1次 | 上传用户:Rosa1201
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
龋病(Dental caries)是发生在牙齿硬组织(牙釉质)的细菌感染性疾病。该病在全球发病率高、流行范围广,是严重危害人类健康的主要口腔疾病之一。长期以来,经过各个国家的努力,采取各种方法预防龋病的发生,特别是氟化物的应用,使龋病的预防收到了明显的效果。但是目前的控制措施还未能完全有效地控制龋病的发生。同时由于氟化物的长期使用,出现了耐氟菌株,这使龋病的预防形势更加严峻。这就迫切需要人们开发新的预防龋病的措施及治疗药物。链球菌群中的变形链球菌(Streptococcus mutans)为主要致龋菌。变形链球菌引起龋病的先决条件是其必须在牙齿表面定植,形成生物膜(Biofilm)即牙菌斑(Dental plaque)。定植在牙菌斑内的变形链球菌可以发酵蔗糖产酸,使牙釉质脱矿。形成生物膜被认为是多种口腔致病菌致病因素之一。因此寻找可以抑制变形链球菌及其生物膜的方法,是龋病预防、治疗的有效措施。抗菌肽(Antimicrobial peptides,AMPs)是具有抗菌(包括细菌、真菌)活性短肽的总称,具有广泛的杀菌活性。细菌细胞壁是维持细菌生存所必需的基本结构之一,与真核细胞不同,其主要的化学成分是肽聚糖。肽聚糖合成中的一个关键反应是UDP-N-乙酰葡糖胺(UDP-GlcNAc)与磷酸烯醇式丙酮酸(PEP)转化为UDP-N-乙酰基-3-O-(1-羧基乙烯基)-D-葡糖胺(UDP-N-乙酰葡糖胺烯醇丙酮酸,UDP-Glc-NAc-EP)。MurA(UDP-N-乙酰葡萄糖胺烯醇式丙酮酸转移酶)是催化此反应的酶,因此它是肽聚糖合成过程中的一个关键酶。由于此反应途径无代谢旁路,并且在人体中不存在此种代谢途径。MurA酶可能是研制预防龋病药物的作用靶点之一。因此,本课题的研究工作包括两部分。(1)筛选针对致龋性变形链球菌及其生物膜有效的抗菌肽,并揭示其作用机制。(2)针对变形链球菌细胞壁肽聚糖合成关键酶MurA作为药物靶点,通过克隆表达得到MurA蛋白,对其进行酶促动力学研究,建立高通量筛选MurA酶抑制剂的分子模型。第一部分取得的研究结果:1.抗菌肽对S. mutans的最低抑菌浓度(MIC)应用96孔板微孔培养基稀释方法测定三种抗菌肽(P-113、PAC-525、D-Nal-Pac-525)对S. mutans的MIC。MIC分别为P-113>16μg/ml,PAC-5258μg/ml,D-NAL-PAC-5254μg/ml。确定最佳抗菌肽为D-Nal-Pac-525。2. D-Nal-Pac-525对S. mutans的生长抑制作用将不同浓度的D-Nal-Pac-525加入到对数期初期的S. mutans培养液中,于不同时间点取样,测OD600,绘制生长曲线。结果显示,当D-Nal-Pac-525浓度为2μg/ml S. mutans生长趋势没有变化,但当其浓度升高到4μg/ml S. mutans生长受到明显抑制。3. D-Nal-Pac-525对S. mutans的杀菌活性将D-Nal-Pac-525(终浓度分别为1、2、4μg/ml)加入到S. mutans培养液中(1×108CFU/ml),厌氧培养,分别在2、4h取样,进行活菌计数,当D-Nal-Pac-525浓度在4g/ml时,与未加药的对照相比S. mutans活菌数量显著减少。4.扫描电镜观察D-Nal-Pac-525引起S. mutans形态学的变化将D-Nal-Pac-525加入到S. mutans(108CFU/ml)培养液中,至终浓度为4μg/ml。37oC厌氧培养4h。离心后收集菌体,标本经过处理固定后用SEM进行观察。与未处理的对照组相比,D-Nal-Pac-525处理后的S. mutans呈现明显的形态学变化。处理组细菌菌体明显变长,菌体表面粗糙有皱褶。同时在处理组的照片上观察到细菌崩解之后形成的碎片。5.透射电镜观察D-Nal-Pac-525引起S. mutans结构的变化同样将D-Nal-Pac-525加入到S. mutans(108CFU/ml)培养液中,至终浓度为4μg/ml。37oC厌氧培养4h。离心后收集菌体,标本经过处理固定后用TEM进行观察。D-Nal-Pac-525对S. mutans菌体表面结构的破坏作用。镜下未处理组菌体表面结构均一,呈高密度线。处理组菌体表面结构变模糊,甚至遭到破坏。同时在处理组菌体内部出现了高密度区域、细菌染色体凝集现象,胞内物质凝集及菌体细胞质膜破坏的现象。6. D-Nal-Pac-525抑制S. mutans生物膜的形成在PVC96孔板上建立S. mutans生物膜模型。将不同浓度的D-Nal-Pac-525(终浓度为0.25,0.5,1,2,4μg/ml)与S. mutans(1×105CFU/ml)BHI培养基菌液(含3%蔗糖)共培养。结果显示D-Nal-Pac-525在浓度为2g/ml时可以抑制S. mutans生物膜的形成。OD600结果验证了肉眼观察的结果。D-Nal-Pac-525对已经形成的生物膜没有破坏作用。7.对S. mutans生物膜相关基因的转录水平没有影响经过D-Nal-Pac-525(4μg/ml)处理4h,S. mutans生物膜相关基因(brpA、vicR及gbpA)的转录水平没有发生变化。第二部分取得的研究结果:1.表达载体pET16b-Smu murA的构建从S. mutans UA159菌株基因组数据库中查询出变形链球菌(UA159)murA基因(SMU1525)的核苷酸序列(大小为1272bp)。设计PCR引物,在上、下游引物的5’端分别加入Nde I和Xho I限制性内切酶位点。以S. mutans UA159基因组DNA为模板,扩增出S. mutans murA基因。将PCR产物与pMD18T克隆载体连接,再将其转化入感受态大肠杆菌Novablue中。用限制性内切酶Hind Ⅲ和EcoR I酶切的方法鉴定重组质粒。对pMD18-Smu murA中的murA基因进行DNA序列测定。将所测得的核苷酸序列与S. mutans UA159murA (SMU1525)基因进行序列比对,完全一致。说明在本实验中获得的murA为正确的S. mutans UA159murA基因。再用Nde I、Xho I双酶切pMD18-Smu murA质粒。回收、纯化murA基因,连接到pET16b表达质粒的Nde I和Xho I位点,构建pET16b-Smu murA表达载体。用EcoR I酶鉴定阳性重组质粒。2. S. mutans MurA蛋白在大肠杆菌BL21(DE3)中的表达、纯化将pET16b-Smu murA表达载体转入大肠杆菌BL21(DE3)中。在37oC振荡培养3小时,达到对数生长期。然后加入终浓度为0.5mM IPTG,室温诱导细菌8小时,诱导携带pET16b-Smu murA表达载体的BL21(DE3)菌株表达重组MurA蛋白。MurA蛋白的N端与质粒pET16b上的组氨酸标签形成融合蛋白。用超声破碎诱导后的BL21(DE3)。分别对上清、沉淀组分进行SDS-PAGE和Westernblotting,结果表明S. mutans MurA蛋白在BL21(DE3)菌株中可溶性表达。用组氨酸-Ni2+亲和层析技术纯化MurA蛋白。对蛋白进行蛋白定量(考马斯亮蓝法),其中第2管MurA蛋白的浓度为1150μg/ml。SDS-PAGE和Westernblotting结果表明MurA蛋白的纯度较高。3. S. mutans MurA酶活性测定方法的建立(1)高效液相色谱法(HPLC):用Nova-Pak C18色谱柱,以三乙胺-醋酸缓冲液为流动相,在260nm处检测反应底物UDP-GlcNAc的减少。(2)化学显色法:S. mutans MurA催化反应的产物之一为磷酸,磷酸可以与钼酸铵形成磷钼酸复合物后使孔雀石绿颜色由黄绿变为蓝绿。用酶标仪在620nm处检测吸光值变化,以测定所生成磷酸的含量。4. S. mutans MurA蛋白酶促反应动力学特性的研究反应底物UDP-GlcNAc和PEP与不同浓度MurA在37oC反应不同时间。结果表明S. mutans MurA反应初速度酶浓度范围为1.84μg/ml,时间范围为5min。分别改变反应的温度和pH值,利用酶标仪在620nm处吸光度值的变化,计算反应产物的生成量。确定S. mutans MurA酶蛋白的最适反应温度是37oC,最适pH值是7.5。采用最佳反应条件,保证一种底物过量,改变另一种底物浓度采用双倒数法测其Km值和Vmax。37oC,pH7.5,酶浓度为1.84μg/ml,反应时间为5分钟。分别用不同的底物浓度,进行酶促反应。利用酶标仪检测620nm处吸光度值,反应产物的生成量。用双倒数作图法得出S. mutans MurA的Km值和Vmax。对于底物PEP,Km值为0.086±0.001mM,Vmax为0.098±0.001mM min-1mg-1。对于底物UDP-GlcNAc的Km值为0.120±0.005mM,最大速率Vmax为0.048±0.002mM min-1mg-1。5.磷霉素对S. mutans MurA功能的验证用磷霉素(Fosfomycin)进一步鉴定纯化的S. mutans MurA功能。将一定浓度的磷霉素与MurA蛋白在室温下预孵(preincubation)10min后,检测MurA蛋白活性变化。MurA酶的活性受到磷霉素抑制。在UDP-GlcNAc存在情况下,MurA受到的抑制作用更加明显。从而证明S. mutans MurA具有UDP-N-乙酰葡萄糖胺烯醇式丙酮酸转移酶活性。结论:1.筛选的抗菌肽D-Nal-Pac-525可以抑制变形链球菌的生长及生物膜的形成,D-Nal-Pac-525可能成为新的预防龋病药物。2.构建了高表达S. mutans MurA蛋白的工程菌株,可以获得大量可溶性MurA蛋白。3.建立了快速、准确测定MurA酶活性的方法,并建立了高通量筛选MurA酶抑制剂的分子模型,为小分子抑制剂的筛选提供了物质保障。
其他文献
【正】 三十年前,法国只有东方语言学院设有汉语专业。五十年代后期,情况发生了变化。巴黎大学和波尔多大学于1957年和1959年率先增设了汉语专业。随后,埃克斯大学、里昂大学
日本脑炎病毒(Japanese encephalitis virus,JEV)属于黄病毒科黄病毒属,是有囊膜的正链RNA病毒,主要的囊膜糖蛋白E与病毒的神经毒性和神经侵袭性相关,能够诱导机体产生保护性
姚松奇(1982-),男,汉,江西萍乡人,江西师范大学文学硕士,萍乡高等专科学校艺术系讲师,全国信息化工程师,CDC中国设计师,中国设计师协会会员,江西省美术家协会会员。设计作品获2011中国之
期刊
目前变电站、充换电(储能)站、数据中心站等分散建设,不利于资源集约高效利用,难以发展高度融合的能源CPSS系统~([1])。基于当今云计算和储能技术,利用变电站站址资源及电力资源,对变电站、储能站和数据中心站及其他功能模块融合建设的模式(简称"三站合一")做了必要性分析与可行性论证,并对建设模式进行了深入探究,为泛在电力物联网的实际建设提供参考。
《化工高等教育》是经国家新闻出版总署批准的一本由教育部主管、华东理工大学主办,面向高等教育领域的管理人员、高等教育理论与实践研究者、一线教师公开发行的教育类学术
基于WiFi芯片和蓝牙芯片设计了一款蓝牙网关产品,它具备后备锂电池供电功能,在外接电源断电的情况下能够自动切换到电池供电并保持周边智能家居传感器设备与蓝牙网关正常通信。为了应对复杂的家居环境,它还集成有功率放大PA芯片,可实现RF信号的放大输出与全屋蓝牙信号覆盖。并集成有压电蜂鸣片驱动电路和压电蜂鸣片报警电路,可实现80 dB以上的报警音量输出与智能家居应用场景集中报警功能,降低周边智能传感器设备
随着时代的发展,科技的进步,高新技术在汽车上的应用日益广泛,汽车维修也出现了一些新的特点。恩施州汽车维修行业的管理体制,技术水平已经远远不能足市场的要求。中国已加入WTO,
俗谚是人们生活经验的总结和智慧的结晶,消费又是人们生存、生活、发展的重要活动。生活谚语充分彰显了节俭与奢侈博弈的适度消费、理性消费的思想,以及崇尚低碳环保的绿色消