论文部分内容阅读
随着城市污水处理量的增加和水处理程度的深化,污泥产量大幅提高,而环境标准的日益严格,更加剧了污泥处置问题的严峻性。与此同时,污泥作为一种生物质能源,具有很高的利用价值。污泥微波热解技术作为污泥处理处置的前沿技术,具有快速、高效节能、成本低、资源化利用率高优点,是污泥资源化利用的发展方向。本文以污泥微波热解-产物综合利用为思路,从微波热解的产能规律以及产物能量回收途径和效果两个方面展开研究。首先,本文通过间歇式污泥微波热解实验考察了热解过程的产物分布、热解气成分以及能量需求。结果表明:随着热解终温的提高,污泥的失重率和产气量均提高,在较高的终温下污泥失重率和挥发份去除率均超过90%,具有良好的减量化、稳定化效果。通过计算不同温度下的能量需求和产物能量,结果显示在各相产物中,热解气的化学能最高。热解终温为800℃时能源回收率和制气效率均为最高,从回收能源方面考虑宜作为污泥热解的最佳条件。同时,本文对应用于中小型污水处理厂的连续式微波热解设备进行了初步模拟,分析了其能耗和运行费用。相比传统污泥处理方式,各种污泥热解技术的能耗均较高。因此对热解气为主的产物进行能量回收就显得至关重要。由固体氧化物燃料电池(SOFC)和微型燃气轮机(MGT)组成的发电系统具有燃料适应性强、效率高、不受规模限制等优势,是小规模分散式生物质气利用的最佳方式。本研究建立了SOFC-MGT发电系统的数学模型,模拟结果表明在设计工况下,使用热解气为燃料的系统发电效率达到55.9%,热电联产(CHP)效率高达74.8%,是高效的能源利用方式。并分析了温度、电流密度、操作压力、燃料利用率等运行条件对发电系统性能的影响。同时,对发电系统中各环节的?损失进行了计算分析,结果可以为该类系统的设计和运行提供理论和技术支持。综上所述,本文对污泥微波热解过程展开了实验研究,对污泥热解气的发电利用进行了模拟分析。这些工作对污泥热解产物的资源化利用具有一定的指导意义,也会在污泥微波热解技术的推广应用中发挥重要的促进作用。