论文部分内容阅读
纳米光子学是纳米科学技术的重要分支,主要研究亚波长尺度下光与物质相互作用的基本规律及应用。半导体纳米线作为纳米光子学中重要的基本素材元件,兼顾了纳米尺寸下特有的局域场增强效应及半导体材料的复合发光特性,在强光场作用下其非线性系数会显著增强,从而产生明显优于块状半导体材料的非线性发光特性。近十几年来,研究人员已经对其在纳米激光器、混频器、太阳能电池、光电集成回路、生物传感等领域的应用潜力进行了极具创新和想象力的前沿探索,并取得了突破性成果。本文在纳米光子学的框架内充分调研了半导体纳米线的发光特性,对前人理论和实验方面的工作进行了综述。着重介绍了半导体纳米线的非线性共振和非线性非共振响应特性,探讨了纳米线结构二阶非线性效应产生的物理机制。其次,重点对纯闪锌矿GaAs纳米线的两种二阶非线性光学特性进行了实验和理论分析。利用有限元法(Finite Element Method, FEM)在稳态和瞬态条件下数值模拟了纳米线结构中局域场增强效应的存在,并在单根纳米线上成功模拟了SHG信号的产生。在此基础上,实验验证了纳米线的倍频特性,表明GaAs纳米线可以实现至少1300-1600nm波段的宽带倍频,可以对800-1800nm近红外波段范围内的入射飞秒激光进行精确的可调谐倍频,且倍频信号对于垂直于纳米线轴向入射的光场偏振具有极高的偏振选择性。最后对同样的纳米线进行了和频信号产生实验。利用1040nm单波长飞秒激光器和输出在1416-1770nm的光参量振荡器(Optical Parameter Oscillator, OPO),成功在纳米线上探测到了可调谐的和频信号。其偏振敏感性相对于倍频信号较弱,本文利用块状晶体的非线性极化率张量对这一结果进行了理论解释。利用两脉冲互相关信号对参考光延时的敏感性可以较为精确地测量(误差2.4%)待测脉冲的脉宽。实验结果表明,纯闪锌矿GaAs纳米线对入射飞秒激光具有优良的倍频与和频特性,是一种高性噪比、宽波段响应的优良混频器,在纳米光子器件领域具有极具广阔的应用前景。