【摘 要】
:
“方程”是五年级上册(人教版教科书)第五单元的内容,它是小学数学知识开始正式进入代数的起点,也是小学数学内容的重点和难点。尽管教师和学生对方程内容十分重视,但方程内
论文部分内容阅读
“方程”是五年级上册(人教版教科书)第五单元的内容,它是小学数学知识开始正式进入代数的起点,也是小学数学内容的重点和难点。尽管教师和学生对方程内容十分重视,但方程内容关涉学生数学思维的转变,方程教学仍然存在较大的困难。本文围绕“如何改进小学数学方程教学”这一核心问题进行研究。具体地说,它包括如下系列问题:第一,如何解读课程标准中“式与方程”的课程目标与内容设定?课程标准(2011年版)与2001颁布的课程标准(实验版)对“式与方程”内容的要求有何变化?第二,小学数学方程教学存在哪些困难?出现这些困难的原因有哪些?第三,改进小学方程内容的课堂教学策略有哪些?如何在课堂教学中有效实施?本文主要运用了访谈研究法、文献研究法以及案例研究法。首先对课程标准中方程内容的目标要求以及教材中方程内容编排特点进行分析,了解方程内容的教学目标以及教科书中方程内容的分布。其次主要通过访谈师生,了解方程教学的现状以及方程教学的困难,了解学生学习方程的困难点,从师生访谈中分析、归纳学生学习方程困难的原因,以及对学生作业试卷分析,深入分析具有代表性的案例,寻找学生学习方程困难的原因。并且分析课堂教学视频,提出教学建议并进行教学设计,最后对怎样更好的设计方程教学提出一些实用性建议。笔者通过师生访谈以及学生作业试卷分析,发现方程教学存在以下困难。在学习“用字母表示数”环节存在以下困难:第一,难以理解“为什么要用字母表示数”第二,容易忽视区分并列符号。第三,忽视“字母表示数”的“二重性”。在学习“方程的意义”环节,学生学习方程有下列困难:第一,对未知数的理解存在误区;第二,不理解方程的思想。在“解方程”环节,学生存在以下困难:第一,学生不理解“等式的性质”的含义。第二,学生误用“连等式”求解方程。第三,学生难以掌握“化归”内容。在“实际问题与方程”中,学生有下列困难:第一,误解题意导致假设错误。第二,找错或找不到等量关系。第三,错误地运用逆向思维列方程。第四,能列出方程但不会求解。从方程意识、用字母表示数、方程的意义、解方程、列方程这五个方面提出以下方程教学的有效策略:第一,培养方程意识:运用前方程知识;第二,理解代数式的含义:比较算术与代数的特点;第三,感悟方程的思想以掌握方程的本质;第四,依据多种线索发现等量关系;第五,运用“代数法”与“算术法”两种方法解方程。
其他文献
喜歌剧盛行于十八世纪的欧洲,又称“喜歌剧”,是和正歌剧相对立的一种歌剧种类。其题材均取自于日常生活,通常表现人们生活中所熟悉的场景,音乐风格轻快幽默。《管家女仆》(《la serva padrona》)是意大利著名的喜歌剧,也是世界上第一部喜歌剧,它的诞生标志着喜歌剧发展的大门从此打开。《管家女仆》是由由意大利作曲家乔瓦尼·巴蒂斯塔·佩格莱西(Giovanni Battista Pergolesi
在现代信息技术广泛应用前提下,为了提高思想政治理论课教学效果,主体之间在行为和语言上相互平等,双向互动,相互理解和融合,形成不同主体间的共识,不同主体通过共识表现的一
在无线传感反应网络通过引入具有丰富资源、甚至可以移动的反应节点,极大地增强了现有的无线传感器网络的功能和应用范围。针对距离反应节点越近传感节点能量消耗越快的问题,研究了基于容量约束的最大跳数最小化的问题,并在此基础上提出了一种全局近似算法。仿真实验表明,该算法能通过设置节点的容量约束,限制节点每轮转发某个事件的最大报文数,以降低单个节点的最大能耗,达到延长网络生存时间的目的。
软件缺陷是软件失效的源头,是影响软件可靠性的重要因素。简述了几种典型的软件缺陷分类方法,结合C++语言,提出了面向程序代码的软件缺陷分类法。采用程序变异方法模拟各类软件缺陷,通过实验,归纳并总结了不同类型的软件缺陷对软件可靠性的影响。
胃大部切除术后功能性排空延迟综合征(FunctionalDelayedGastricEmptying.FDGE)是指胃大部切除术后继发功能性排空障碍所引起的一组症候群。本文通过对14例FDGE进行分析,其病因是胃大部切除术使支配残胃的迷走神经完全或不完
阐述了电动汽车用锂动力电池的工作过程,结合三元锂电池安全性能试验中过充、针刺等试验结果现象,分析单体电池破坏的内在原因,从三元锂电池使用的材料、单体电池的结构等方
本文采用标准曲线法测定对地面水以及地面水为水源的自来水及人工合成水样中的铝含量,取得了较好的精密度及准确度,作者认为本法较适用于饮水铝的测定。
Steger算法在结构光中心提取中具有亚像素精度,但其计算量非常大。针对Steger算法的计算速度问题,提出一种基于GPU(Graphic Processing Unit)的亚像素精度结构光中心提取算法。该算法对Steger算法进行改进,并利用GPU的并行处理能力和Steger算法并行性特点,大大提高了结构光中心的提取速度。实验证明基于GPU的结构光中心快速提取方法具有和Steger算法同样的精度
利用平板菌落计数法对洛阳市土壤微生物数量状况进行了初步研究,结果表明:洛阳市土壤微生物总量为134.5×10^4个/g(鲜土),其中细菌最多,125.0×10^4个/g(鲜土),放线菌次之