纯钨闭塞式双等通道转角镦挤实验及组织性能研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:hjjnet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为一种难熔稀有金属,钨具有优良的物理和化学性能,在航天航空、电子、化工、核工业及其它极端环境领域中具有广泛的应用前景。然而钨具有低温脆性、再结晶脆性,使得其在应用领域受到限制。为此优化钨的微观结构,改善其力学性能,是促进钨材料发展,拓展其应用领域的关键。改善钨性能的方法之一是在成分一定的条件下,减小晶粒尺寸、改善组织均匀性、提高致密度。基于大塑性变形理论的工艺方法具有强烈的晶粒细化效果,且制备过程不引入杂质,能显著提高材料的性能。闭塞式双等通道转角镦挤(Occlusive Double Equal Channel Angular Pressing,O-DECAP)工艺是大塑性变形方法的一种,通过多道次挤压使材料获得了很大的累积应变,实现组织细化,得到超细晶甚至纳米晶材料,改善材料的综合性能。本文模拟和实验均是在恒温900℃,挤压路径为Bc路径的条件下进行的多道次O-DECAP变形。通过有限元软件对纯钨多道次变形行为进行分析,可以将变形分为三个阶段:即初始变形阶段、剪切变形阶段、稳定变形阶段。单道次变形结束后,试样的平均应变为1.15,多道次变形后,试样的应变值得到了提升,实现了应变累积,试样的应变均匀性也得到了不同程度的提高。三道次后,最小均匀性系数为0.28,试样应变均匀性较一、二道次均有较大提升。对多道次不同部位的组织演变过程进行了的讨论。通过OM、XRD、TEM、EBSD及显微硬度测试对变形后纯钨微观组织及力学性能进行了分析讨论。可知初始状态下纯钨平均晶粒尺寸介于80~100μm,多道次变形后平均晶粒尺寸在2μm左右。随着道次的增加,晶内及晶界处的位错等缺陷发生了较大的变化,位错由主要集中在晶界附近。变形后晶粒取向由{001}晶面族向{112}晶面族转变。变形前后试样主要以α-W晶型为主,同时在变形试样中有γ-W存在。随着道次的增加,微观组织发生了变化,三道次后微观应变为0.07784%,位错密度为2.837×1014m-2。变形后组织的晶界角度及占比发生了较大的变化,随着道次的增加,大角度晶界占比不断减小。三道次变形后,试样的平均硬度值达到了521±4 HV,其均匀系数为3.45%。纯钨O-DCEAP变形后,通过XRD测试和TEM测实验证了变形过程中有相变的产生,即γ-W和β-W。对相变的路径进行了简单的分析,切应力引导bcc-W最大密排面发生滑移,进而导致原子的滑移,原子滑移一定的位移时,进入一个相对稳定的形态。
其他文献
随着红色文化的社会关注度逐渐提高,以及大运河文化带建设国家战略的不断推进,大运河文化资源的保护和传承更具现实意义和重要价值。大运河沿线地区应树立大局意识,统筹合理规划;完善制度建设,建立区域省域协同开放保护机制;建立资金投入长效机制,确保财力落实到位;重视专业人才培养,实现人力资源配备到位;深度挖掘文物内涵,丰富展示的交互性和多元化;拓宽宣传渠道,丰富宣传教育的覆盖面。
铁酸铋无铅压电陶瓷因其具有较高的居里温度以及良好的铁电性能,在高温传感器,换能器和储存器等领域有广泛的应用前景,从而受到大量学者的关注。本论文以铁酸铋基钙钛矿陶瓷材料为基体,通过优化组成设计,构建新的陶瓷体系,研究其组成、结构、电学性能之间的关系,并研究了其压电性能,铁电性能以及能量存储性能及其相关的机理。本文的主要研究内容如下:(1)研究了La(Zn1/2Ti1/2)O3(LZT)固溶取代BiF
SiC陶瓷及其复合材料具有优异的高温力学性能、优良的抗氧化性、良好的耐腐蚀性,同时具有很低的放射性,可用于航空发动机的燃烧室及核聚变堆包层结构材料等关键部件上,被认为是苛刻环境下的理想结构材料。然而,由于SiC陶瓷具有硬度高和脆性大的特点,加工难度大。因此,想要得到大尺寸和形状较复杂的构件,对陶瓷进行连接是最理想的途径。钎焊以其方便,成本较低和高质量等优点,而得到广泛应用。本文采用Si及Si-50
过去的一年,我们深切地感受到党和国家在加快教育高质量发展、推进教育现代化、建设教育强国上迈出的坚定步伐,实施的有力举措;从“双减”政策到教育评价改革,再到新《民办教育促进法实施条例》等,基础教育领域的每一项改革内容都指向新发展理念的贯彻、新发展格局的构建、新教育生态的重塑,都事关立德树人根本任务,事关人民群众急难愁盼,事关促进学生全面发展健康成长,意义十分重大。其中,作为“双一号工程”的“双
期刊
随着微波器件向高频化、小型化、超低损耗和温度稳定性方向发展,具有中等介电常数、高品质因数且温度系数近零的微波介质陶瓷逐渐成为功能陶瓷材料领域内新的研究热点,其制备的各种微波器件广泛应用于移动通信基站、全球卫星定位等领域。本文采用传统固相反应法制备了温度稳定的BaO-0.6ZnO-4TiO2(BZT)陶瓷以及两种新型中介低损耗微波介质陶瓷Ba2MgTi5O13和Sr2CeO4,并通过离子取代的方法调
6066铝合金因为合金化水平高,添加了较多的Si元素和Cu元素,因而强度优异,抗疲劳性能、焊接性能优良,是轨道交通和航空航天等领域的理想材料。但其抗腐蚀性能不理想,在复杂的自然界环境下,腐蚀介质易引起6066合金材料腐蚀,严重影响材料使用寿命以及应用的安全性,限制了其在汽车、高速列车车体结构件、飞机机身板材等处的应用。因而,在保证6066合金现有强度的前提下,通过材料成分改性、对合金进行合理塑性变
铝钪合金具有高强度、高韧性、优良可焊性和耐腐蚀性,是新一代航空、航天、船舶用结构材料。本文熔炼制备铝钪合金,通过金相显微镜、扫描电子显微镜、背散射电子衍射、X射线衍射仪和透射电子显微镜观察,硬度以及拉伸性能测试等方法系统研究了合金在室温轧制、液氮控温轧制以及液氮控温轧制+退火处理后组织性能的变化规律。首先通过熔炼铸造制备Al-Mg-Si-Sc-Zr铸锭,发现铸锭内部元素、组织分布不均匀,存在晶内偏
作为细化晶粒、改善材料综合性能的有效方法之一,大塑性变形法具有成本较低、操作简单等优点。其中等径角挤压工艺(ECAP)作为大塑性变形中的典型代表,被广泛用于获得晶粒细小、组织均匀、三维尺寸较大的块状高性能材料。但变形抗力大的材料通过模具转角时容易出现开裂,同时冲头也会出现偏载现象。双向等通道挤压(DECAP)是在传统等径角挤压工艺基础上开发而来的一种新的大塑性变形工艺,也能够使材料发生剧烈塑性变形
面向高频功率电感使用的金属软磁粉芯,目前面临单一材质合金粉末的磁导率与损耗很难同时优化的问题。因此,通常将几种粉末复合制成复合粉芯来实现磁性能的平衡。其中,非晶粉末由于具有低损耗和优异的磁导率频率稳定性,羰基铁粉由于具有高磁导率,因此被广泛用于各种复合粉芯的制备。本文采用磷酸钝化工艺和TEOS水解工艺对Fe-Si-Cr-B非晶粉和羰基铁粉进行了绝缘包覆,制备了非晶粉芯、羰基铁粉芯以及非晶/羰基铁复
铸造Al-Si合金因具有良好的力学性能和耐磨性、密度小、比强度高、热膨胀系数低、以及良好的铸造性能等优点,已经广泛地应用于制造活塞的材料。发动机工作时,活塞长期处在高温下运行,其表面最高温度可达300℃以上,并且,还要承受着反复的交变载荷。因此,对于活塞铝硅合金材料的高温强度和疲劳性能研究备受关注。本文以多元合金化共晶Al-Si活塞合金为对象,重点研究了其在300℃的温度下经历25~400h长时间