论文部分内容阅读
液压直线往复密封因其良好的追随性、补偿性和较低的摩擦阻力,广泛应用于航空、航天、船舶、汽车和工程机械等领域的液压缸设备中,用于防止油液的外漏以及外界污染物侵入液压系统。它的失效会直接影响液压系统的效率,导致巨大的经济损失,严重时甚至会带来人身安全事故。因此,理论分析结合实验研究,开展液压直线往复密封的机理揭示及性能预测研究,有助于高寿命、高可靠性密封的研制,有利于推动往复密封设计方法及理论体系的完善与发展,对保障我国关键液压设备的安全可靠性、实现我国高端密封产品的国产化具有重要的理论价值和实际意义。基于软弹流润滑理论,建立了多尺度多物理场耦合的等温软弹流混合润滑模型,采用有限单元法耦合求解并验证了数值仿真模型的正确性。模型耦合考虑了界面油膜的流体力学分析、密封圈表面粗糙峰与活塞杆之间的接触力学分析、密封圈的宏观固体力学分析以及接触区密封表面的微观变形分析。在等温条件下,对比分析了不同工况参数下橡胶O形圈和橡塑组合斯特封界面油膜压力和膜厚的分布,揭示了典型往复密封的混合润滑机理,获得了往复速度、介质压力和摩擦配副表面粗糙度等关键工况和表面形貌参数对典型往复密封性能的影响规律,指出斯特封唇口的结构特征是其性能优于O形圈的关键所在。考虑接触界面摩擦热的影响,建立了热弹流混合润滑模型,分析了不同工况参数下油膜温度和粘度以及O形圈温度场分布的变化规律,研究了油膜温度和油膜压力对温度-粘度楔效应的作用机制,揭示了热效应对油膜行为和密封性能的影响机制,获得了往复速度、介质压力和摩擦配副表面粗糙度等关键工况和表面形貌参数对O形圈热流体动力润滑特性的影响规律,阐明了高介质压力和粗糙摩擦配副表面均不利于密封的原因。基于幂律流体模型,建立了非牛顿流体热弹流混合润滑模型,对比分析了假塑性和膨胀性两种典型非牛顿流体的油膜压力和速度场的分布,分析了非牛顿流体的非线性流变属性对油膜行为的影响机制,揭示了两种典型非牛顿流体的润滑机理,获得了幂律指数对O形圈热动力润滑特性的影响规律。考虑时变效应的影响,建立了瞬态热弹流混合润滑模型,分析了变速工况下O形圈的界面油膜温度、压力和膜厚以及O形圈温度场的时变规律,揭示了瞬态工况下热积累现象对油膜行为的影响机制,进一步分析了油膜水污染对O形圈瞬态热动力润滑特性的影响规律,指出轻微水污染有利于改善密封界面之间润滑性能,有利于密封。为验证理论分析结果,同时为液压往复密封工程设计提供一定的实验参考数据,自主创新设计并搭建了液压往复密封装置。该装置可测量密封件在回程和进程下的摩擦力,以及单个往复周期的净泄漏量和密封圈-活塞杆接触界面的平均温升。利用该实验装置开展了准恒速工况下往复速度、介质压力和活塞杆表面粗糙度等参数对O形圈密封性能的影响研究,并与理论分析结果进行比对,验证了弹性体密封热弹流理论模型的正确性。在此基础上研究了连续变速和频繁启停两种典型变速工况对O形圈密封性能的影响,指出频繁启停会造成密封泄漏增加,停止再启动瞬间摩擦阻力大,易诱导密封发生失效。论文的研究成果较系统地阐述了界面摩擦热、流体流变属性和油膜水污染等对密封界面之间油膜行为的影响机制,丰富和完善了液压直线往复密封设计方法及理论体系,可为液压直线往复密封的工程选型和高寿命、高可靠性往复密封的研制提供理论指导和设计依据。