基于新型带通网络的低相噪微波振荡器研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:hhenry123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着通信方式与场景越来越复杂,对微波信号的性能提出了更高的要求。微波振荡器是产生微波信号源的重要器件,其性能好坏将直接影响无线系统的各项性能指标和传输性能。本文针对振荡器的相位噪声性能开展深入研究,基于相位噪声理论模型,探索新型选频网络拓扑结构并应用到反馈式振荡器之中,相位噪声性能皆超过国内外文献所报道的同类器件水平。主要研究工作包括以下三方面:1、提出了一种基于源/负载耦合选频网络的单端新型振荡器。通过在两个四分之一SIR谐振器之间增加源/负载耦合,设计出一种具有广义切比雪夫响应的窄带选频网络,且在二次、三次谐波处有很高的抑制度。通道两侧的两个传输零点产生了陡峭的群时延,提升了有载品质因数QL,有利于降低振荡器的相位噪声。基于该选频网络,设计了一种工作于S波段的低相噪微波振荡器,工作频率为1.989GHz,输出功率为8.35dBm。在偏移载波100k Hz频率处的相位噪声为-127.76dBc/Hz,是目前国内外文献所报道S波段中相噪性能最好的微带振荡器。此外,二次谐波抑制为46.03dBc。2、提出了一种新型差分低相噪振荡器。基于源/负载耦合的选频网络,进一步发展了平衡选频网络,在整个频段获得较高的共模抑制。基于该平衡选频网络,设计了工作于S波段的差分低相噪微波振荡器,工作频率为2.025GHz,输出功率为6.43dBm。在偏移载波100k Hz频率处的相位噪声为-129.48dBc/Hz,二次谐波抑制为26.49dBc。对比国内外已发表的同类振荡器,其相位噪声具有明显优势。3、提出了两种并发双频低相噪微波振荡器。并发双频振荡器A使用基于交叉耦合的三阶双工器作为各自通道的选频网络,以背靠背形式进行连接输出。测量结果显示双频的工作频率分别为2.061GHz和3.427GHz,对应的输出功率为1.06dBm和-4.27dBm。在频偏100k Hz处的相位噪声分别为-113.94dBc/Hz和-120.88dBc/Hz,在载波附近的谐波抑制度大于23.02dB;双频振荡器B则采用基于双模谐振器的二阶双工器作为选频网络。双频的工作频率分别为2.016GHz和3.305GHz,对应的输出功率为7.10dBm和-3.22dBm。在频偏100k Hz处的相位噪声分别为-114.98 dBc/Hz和-120.01dBc/Hz,谐波抑制度大于32.42dBc。本文首次采用两个不同工作频带的低噪声放大器进行子振荡器回路设计,是目前国内外文献所报道相噪性能最佳的双频振荡器。
其他文献
碳纳米管(cnt)凭借其量子电容特性、高迁移率、截止频率在THz以上的潜能、弹道传输特性,被认为是制造RF晶体管的理想半导体材料,到目前为止,世界各国都致力于高性能cnt FET的研究,然而除了关注于cnt FET本身的直流特性、截止频率、振荡频率外,基于cnt的RF电路芯片验证也是至关重要的,这可以表明其可以代替传统半导体来设计集成电路。本文着重研究了放大器的集成电路,主要的研究方法与成果如下:
随着互联网技术的普及和不断革新,Wi-Fi网络和智能移动终端在人类日常活动中所扮演的角色也越来越重要,同时由于人类的活动大部分都在室内环境下进行,所以人们对基于室内环境的位置服务的需求也不断增大。在室外定位中占据主导地位的卫星导航系统,其信号在穿透建筑的钢筋混凝土墙壁后衰减十分严重,精度也随之衰退到5m至20m,显然这样的定位效果无法满足空间较小的室内环境,因此许多室内定位技术应时而生,而Wi-F
随着量子信息技术的发展,人们逐渐认识到单一量子载体在许多应用场景具有局限性,因此出现了由不同量子载体构成的混合量子系统。以金刚石NV色心为例:NV色心具有很多优点,比如电子自旋态易于读出和操控,室温下相干时间长等,是最受欢迎的固态量子体系之一,在量子计算、精密测量、量子网络等领域具有重要的应用前景;然而,NV色心在原位电学调控方面遇到了挑战,在多比特扩展(即实现芯片上不同色心之间的耦合)方面遇到了
精神分裂症是一种严重的精神疾病,其连接障碍假说提出该疾病与神经元的异常连接有关。静息态功能磁共振成像显示,基于血氧水平依赖信号的自发神经活动在脑区之间相互关联,并组织成空间分离的功能网络,而这些功能网络之间信息交流的异常与精神分裂症中已知的认知功能受损有关。因此,基于磁共振成像的脑网络功能连接分析有潜力揭示精神分裂症的发病机理与指导早期诊断和预防疾病。然而,传统脑网络分析技术仍有亟待解决的科学问题
机器听觉指的是机器通过分析声音信号获取信息的能力。随着智能化时代的到来,机器听觉受到日益广泛的关注。其中一个重要的任务是声音事件识别(Sound Event Recognition,SER)任务。声音事件识别指通过分析音频信号,判断其中的发生的物理事件信息。目前主流的声音事件识别方法是基于深度学习的,但在数据方面存在两个问题:第一,深度学习依赖有标注数据,而声音事件的标注成本很高,难以获得足量有标
近年来,FPGA被广泛用于各个领域,也使得其安全问题变得越来越重要。当前,硬件木马是一种对FPGA有很大威胁的攻击方式,其具备高隐蔽性,强破坏力的特点,在硬件正常工作或者电路出厂测试时都不会被激活,只有在特定条件下才会生效。而其一旦生效,则会破坏用户的电路或者窃取电路中的信息。目前对硬件木马较为有效的检测方式是对网表或RTL代码进行分析,但是对于大部分使用者而言,一般只能接触到比特流文件,想要检测
铁路事业在我国经济建设过程中发挥着重要的作用,传统的货运铁路仍需大量人力资源的投入,而随着计算机视觉的发展,该部分的可优化空间正逐步增加。本文通过针对货运列车定点停车需求的分析,发现该需求可以由计算机视觉中的目标检测技术实现。然而由于实际场景中目标物体会因光照、角度、磨损等因素影响而难以辨认,因此目标检测目前仍是一个颇具有挑战性的任务。而如何设计能够迅速,准确且泛用的特征也成为了该领域的研究重点。
伴随着现代工业生产规模的不断扩大,工业生产已经进入了大数据时代,在日常的工业生产流程中,每一个作业环节都会产生许多需要记录的生产数据值,以此作为衡量产品是否合格的标准。对于许多机器较为陈旧的工厂而言,其设备并不具备相应的数据接口,大多数时候都必须依靠人工识别手动抄录的方式来完成对生产数据的记录,这样高度重复枯燥乏味的工作无疑是对人力资源一种极大的浪费,使得工厂的生产效率大打折扣。为解决这一问题,迫
监察体制改革下对于高校公权力行使者如何监督,学界知之甚少。高等教育领域的公权力监督问题似乎一直游离在人们的视野边缘,尽管实践中已然设立了对高校公权力行使进行监督的相关部门和机构。不仅学界对这一问题关注较少且所提建议有如隔靴搔痒,不得要领,实务人士也或不能很好描述这一实践图景,或基于各种原因而三缄其口。随着国家《监察法》颁布,各级监察委员会有序运转,国家监察体系总体框架初步建成,监察体制改革进入面向
目前,互联网处处都有推荐系统的身影,如电商、新闻、短视频等等。信息过载情况下,推荐系统能快速从商品库中筛选出用户可能感兴趣的商品,不仅帮助用户高效获取信息,还能提高商家的收益。推荐系统已经成为互联网应用中的核心技术之一,也是推动互联网增长的强劲引擎。本文从推荐系统应用场景中的几个普遍存在的实际问题出发,提出了一些新的思想与算法。具体内容如下:(1)首先,在推荐系统中,常常为每个用户计算一个嵌入向量