步行机器人系统鲁棒控制器的分析及研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:Agoni_iAy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器人的控制问题无论在理论界还是工程界多年来一直备受人们关注。机器人不仅是一个十分复杂的时变、强耦合、高度非线性系统,而且实际上还存在诸多不确定因素,诸如测量误差、摩擦、负载变化、随机扰动及未建模动态等,因此无法得到完整的、精确的机器人系统模型。在机器人轨迹跟踪过程中,也存在系统元件故障引起机器人结构变化及运动轨迹逆解求取的实时性等问题。对于高速、高精度、高性能机器人系统而言,这些不确定因素严重影响其控制品质,为此研究不确定机器人的控制问题具有重要的理论意义和实用价值。鲁棒控制问题则恰恰是其中的焦点问题之一。我们必须面对机器人大量不确定性因素的存在,而鲁棒控制正是以具有不确定性的系统为研究对象的控制技术。因此,研究具有不确定性机器人的鲁棒控制问题就具有十分重要的理论和实践意义。首先,本文针对双足步行机器人进行基础性的研究工作,建立了七连杆步行机器人的简化模型。基于齐次坐标变换理论对双足步行机器人进行了正逆运动学建模。在运动学建模的基础上,基于拉格朗日动力学方程推导双足机器人的动力学方程。接着,系统地梳理了当前机器人技术的几类控制策略,分析比较了各自的有缺点。然后,针对外部干扰难以测量的不确定机器人系统,采用一种改进后的机器人鲁棒控制策略,通过仿真实验验证了所提控制方案的有效性。针对鲁棒控制策略虽然可以保证系统的稳定性,但是不能获得良好的暂态性能,并且不确定性的上界难以获知的缺点,探讨一种基于神经网络的鲁棒控制器。它将鲁棒控制和神经网络结合起来构成自适应控制系统。而在鲁棒自适应控制中加入了PD控制器,可以避免加速度测量,增强速度信号的抗干扰能力,而且通过设计纯粹的前馈项并对其进行离线计算,大大降低实时控制的运算量,故简化了控制结构。最后,文中给出该方向发展趋势与展望。
其他文献
本文运用实验和数值模拟方法对翼型绕流的电磁力优化控制问题进行研究。主要包括以下两个方面的内容。1.基于DSP系统的翼型运动控制装置的优化设计采用TMS320F2812(DSP芯片)
能源短缺与环境污染是当今世界面临的两大问题,新能源的发展与应用受到各国政府及学者日益广泛的关注。质子交换膜燃料电池清洁环保、节能高效,具有广阔的应用前景。燃料电池的
配电网规划是电力系统规划的重要组成部分,对其进行科学合理的规划,寻求最佳电网投资决策可以获得巨大的经济和社会效益。中压配电网规划是根据变电站的容量及用户的负荷容量,设计最佳的网络结构,给用户提供长期稳定、并能满足用户需求的电能。其涉及线路的辐射状、网络损耗、供电可靠性等约束,是一个非线性、多目标、多约束问题。在分析和研究国内外配电网络规划方法的基础上,针对配电网络的辐射型、连通性特点,本文对基本的
指针式万用表表壳图像的自动处理和识别,是基于机器视觉的指针式万用表的自动检定系统的一个重要组成部分。本文采用机器视觉、图像处理等技术实现了指针式万用表表壳图像的
移动Ad Hoc网络是一种不依赖于固定基础设施,多跳、自组织的无线网络,由于其组网方便、高抗毁性、抗故障性等特点,近年来一直为无线网络研究的热点。目前,该网络还不能完全实用,大
高速光纤通信(大于40Gb/s)成为了近年来热门的研究课题,全球光纤光缆及光网络设备市场也一直保持着飞速的发展。随着远距离和高速通信系统的发展,光纤通信中不被关注的偏振模
近年来电力电子技术发展中提出的三电平变换器,由于其开关管的电压应力为输入直流电压的一半,非常适用于高输入电压、中大功率的应用场合。部分三电平变换器在降低开关电压应力
传统运动控制系统中信息的传递途径和对信息的处理手段比较有限。现场总线开辟了一个新的通道,通过这个通道能够实现全数字化、双向的信息传递,基于现场总线规范建立起的控制系统能够及时将信息传递给各种数据显示、数据处理设备,也能够实现设备资源的统一化,提高设备利用率。本文以无刷直流电机控制系统为背景,致力于将现场总线技术运用到运动控制系统中,建立起PC机与DSP控制器之间的通讯接口,实现通过PC机人机交互界
随着计算机技术、通信技术和数字信息技术的发展,基于生物识别的个人身份认证技术将传统的安全技术推向新的高度。基于虹膜的身份识别作为一种高度可靠的非侵犯性生物特征识
随着经济社会的快速发展,人们对石油等化石燃料的消费需求与日俱增,同时伴随着化石资源短缺、环境污染等一系列问题。在石油资源短缺、环境污染严重、汽车数量激增的大背景下,甲醇作为具有广阔前景的石油替代燃料将发挥十分积极且重要的作用。依据甲醇和柴油的燃烧特性,提出新型混合燃烧方式燃烧甲醇,即在起车或小负荷工况下,发动机以纯柴油模式进行燃烧;在中高负荷工况下,发动机以双燃料模式燃烧。这种燃烧方式可有效节省柴