结构光成像系统的非线性预矫正和标定方法研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:ZHANGLIAO2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于结构光条纹投影的成像系统因其无接触、高效率和高精度等优点,被广泛地运用于三维测量等计算成像领域。而结构光系统的非线性失真和光学畸变等因素降低了结构光三维测量的精度。本研究在结构光成像系统非线性模型的基础上,分析了各系统参数对展开相位估计精度的影响;提出了一种针对结构光三维测量系统空间几何畸变和光强非线性失真问题的预矫正方法;设计了一种实现结构光系统复合标定的快速方法。针对几何畸变和光强失真,建立了结构光成像系统各子系统的数学模型,分析了影响三维测量精度的关键因素。推导了标准相移法的相位主值、调制光强和背景光强误差公式,论证了调制光强、相移步数以及系统随机噪声是影响系统测量精度的三个最主要因素。基于七阶多项式建立了投影机灰度值响应模型,并结合光学畸变模型,对投影图案进行预矫正处理,同时校正投影图案的光学畸变和失真。预矫正方法截取平缓的灰度值区间作为调制光强取值范围,能有效避免平台效应造成的量化误差。通过与后补偿方法的对照实验,实验数据表明:预矫正方法更有效抑制投影系统的非线性误差,其展开相位方差比后补偿方法低40%以上;预矫正方法的相位误差仅为0.016rad。尤其在离焦状态下,预矫正方法仍然对非线性误差有着良好的抑制作用,且能避免复杂的畸变补偿运算。引入圆形阵列标定板,设计了一套结构光系统复合标定方法。为了避免不同特征点之间串扰,将投影平面分成若干投影区域,每个区域单独建立单应性矩阵。通过射影变换中交比不变性来确定投影特征点的亚像素坐标,提高了标定精度。该标定方法在保证标定效率的同时,在两个方向轴上的最大重投影误差均下降了一个数量级,重投影误差的标准差也降低到传统标定方法的四分之一左右。
其他文献
快速发展的量子算法和量子计算机技术,给现有大部分依赖于计算复杂性的传统密码算法带来了巨大的安全威胁。量子密钥协商协议不再依赖数学上的计算复杂度保证其安全性,利用量子比特承载密钥信息,一旦检测到量子比特在传输过程中遭受到恶意窃听便中止协议。量子密钥协商协议能够抵御拥有完全量子能力的窃听者的攻击,保证信息论意义上的无条件安全性。半量子概念有效地降低量子通信的运维成本,有利于促进量子密钥协商的实际应用。
学位
电力是国家发展的命脉,电力行业运行的各个环节都会产生大量的数据信息,对这些电力数据进行挖掘意义重大。针对传统机器学习方法人工提取电力数据特征容易丢失特征信息,导致挖掘效果差的问题,本文结合当前热门深度学习方法对95598平台产生的电力工单文本进行挖掘分析。主要工作如下:首先,收集了浙江省95598电力工单文本数据,删除其中一些空白、乱码等工单,将剩下的数据进行标注生成训练标签,为后续的文本挖掘做准
学位
6G将全面实现物联世界的数字化,以可见光、射频等多种介质融合的通信感知一体化技术是6G的核心关键技术之一。室内作为信息产业及数字经济绝大部分连接的产生场景,是6G最核心的应用场景,因此,基于可见光等介质融合的通信感知一体化技术必须解决好室内可见光复杂传播环境相关的问题。本文将重点聚焦于高精度、低复杂度的室内可见光通信信道建模,以全面、准确、实时地刻画室内可见光传输路径的空间、时间、功率分布,从而形
学位
生物特征识别(人脸、指纹、掌纹等模态)是一种新型的、极具发展前景的身份认证方式。与其它模态相比,指节纹(Finger-knuckle-print,FKP)具有丰富鉴别特征,不易磨损,用户接受性强,获取成本低等优势,逐渐成为近年的主流研究对象之一。同时,编码类指节纹识别算法具有无需训练,存储量低,匹配速度快等特点,也成为了一种重要的实用性技术。现有的编码类指节纹识别研究中存在着以下两个问题。问题一,
学位
多个自主导航机器人协作探索地图,是在未知环境中高效率执行危险且繁杂任务的基础。单个机器人传感器探测范围、通信连接、电源功率等都受到限制。在大尺度、复杂未知环境中。装备摄像机、激光雷达等多种探测传感器的机器人群体通过共享信息,高效协作完成探测二维和三维地图或模型面。协作可以缩短搜索时间,同时在提高模型完整性和准确性方面也具备很大的潜力。面向传感器和通信连接受限的机器人群体,下一步最佳视点规划和传感器
学位
无人机因其轻巧灵敏和安全可靠等优势,在室外获得了广泛的应用,如航拍摄影、农田灌溉、电力巡检等等。相比室外,无人机在室内的应用受到极大限制,究其原因不外乎所依赖的卫星导航系统在室内信号受限。针对无人机在室内应用受限问题,仅依靠自身搭载的传感器来完成在室内或未知环境下的飞行探索已经成为一个研究热点。基于上述背景,本文以四旋翼无人机为平台,结合双目视觉传感器并融合惯性测量单元,搭载机载计算机和激光雷达,
学位
光子计数单像素成像将光子计数技术和基于压缩感知的单像素成像结合,具有高灵敏、低成本的优势,在光学遥感成像、光谱成像、生物医学成像等领域有重要的应用。传统的重建算法存在采样时间和重建时间长的问题,近年来将深度学习用于压缩感知重建取得了重大的突破。基于深度学习的压缩采样和重建网络,将去除偏置和激活函数的全连接层作为测量矩阵,避免了传统迭代算法的带来的巨大计算量,从而实现了更快更高质量的图像重建。但利用
学位
作为量子密码学的一个重要研究方向,量子密钥分配旨在实现合法通信参与者之间安全地共享密钥。量子密钥分配协议一般要求所有通信参与者都具备量子能力,而且协议所涉及的多数量子设备都比较昂贵。Boyer等开创性地提出了适用于量子方和经典方之间的半量子密钥分配协议。为了避免半量子密钥分配协议中攻击者Eve冒充合法参与者Alice或Bob,需要对通信参与者进行身份认证。基于Cluster态和类GHZ态等纠缠态,
学位
作为测试系统参数,验证成像算法性能和分析干扰噪声的重要手段,SAR的回波仿真对SAR技术的研究有着至关重要的作用。针对SAR回波模拟方法设计,本文首先对SAR成像方法展开了分析。SAR回波模拟方法主要分为时域方法和频域方法。频域算法基于快速傅里叶变换的逆向处理,能够通过较低的运算量获得良好的分辨率性能。然而,频域方法通常需要满足方位向不变假设,因此频域方法的应用将受到平台构型的限制,无法适用于任意
学位
探地雷达(Ground penetrating radar,GPR)是利用天线发射和接收高频电磁波来探测介质内部物质特性和分布规律的一种地球物理方法,在工程勘察领域的应用日益广泛。在探地雷达反演中,信号中的强杂波严重影响了反演过程中地底目标成像的精度,并且传统反演方法大多数采用非线性迭代优化算法求解,面临着求解时间久、计算复杂度高和参数设置冗杂等问题。本文将以低秩稀疏分解理论为基础的杂波抑制与成像
学位