基于深度学习的图像语义分割技术研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:sunjava2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图像语义分割是一种计算机视觉技术。随着深度学习发展,语义分割逐渐应用到医疗影像、自动化驾驶以及机器人视觉等领域。使用深度卷积神经网络对图像进行语义分割时,池化层对特征图进行池化运算会导致特征图的局部区域细节特征信息的丢失,因而分割结果会出现因提取特征的细节信息不足导致细小物体的像素点和边缘的像素点被误分现象。上述两种现象会分别造成语义信息不足、边缘清晰度偏低的问题。因此,本文通过研究语义分割网络结构和特征融合类型,设计特征融合结构和改进上采样结构来补充一些来自特征提取结构的低层和中间层细节特征。针对特征提取结构中的最后一层特征图细节信息不足问题,本文结合空洞卷积增大感受野的作用,在编码解码网络架构上设计基于空洞卷积的融合结构。首先,明确特征融合位置,本文使特征提取结构的不同卷积模块输出特征图融合。其次,给高层特征图补充特征融合模块提取的特征,再将融合的特征图和特征提取结构中最后一层的输出特征图进行融合,最后将这次融合的特征图输入上采样结构中。上述操作使上采样结构的输入特征图包含更加丰富的细节信息和全局的语义特征,并可增强细节特征在特征图的局部区域影响力,从而提高分割精度。为了增大特征提取结构输出的特征图像素点感受野,本文首先设计多尺度特征融合结构对特征提取结构中的最后池化层进行多尺度提取特征,再将其与空洞卷积的跨层融合结构输出的特征图相融合以构建多尺度特征共享网络,使特征提取结构输出特征图的语义更具有全局性。值得注意的是,上述改进的网络并没有增强浅层特征的细节在局部区域影响力。因此,在将浅层特征图和上采样层特征图融合之前,有必要设计邻近浅层特征融合结构来增强浅层特征图的非线性表达能力和增大浅层特征图感受野。最后,为了分析网络结构的可行性,本文在Pascal VOC2012数据集上进行实验,并与融合前的方法进行比较。实验表明,融合后的网络在分割精度上有所提升,分割效果得到改善。
其他文献
中国制造向中国智造的改革转变带动了智慧物流系统和智能仓储系统的发展,自动导航车(Automated Guided Vehicle,AGV)作为离散制造工厂和智能仓储系统的重要传送带,担任了运输的任务。在离散制造工厂中,作为主要操作对象的物料是整体运作和管理的中心,物料的物流过程也是影响整体生产效率的关键过程,自动化、智能化的路径规划可以极大提高物流的效率,从而提高企业生产的整体效率。因此,对AGV
随着半导体与人工智能技术的飞速发展,自动驾驶成为了目前学术界与工业界的研究热点之一。自动驾驶汽车只有对周围环境有着精准的感知,才能够稳定可靠地运行。目标检测是自动驾驶系统感知模块的核心功能,通常人们采用二维的目标检测,即根据图像信息预测出物体的位置与类别。然而,二维的目标检测不能提供准确的深度信息,即距离等信息,而这却是自动驾驶系统中路径规划、障碍物避让等模块所必须的。激光雷达点云能够提供十分精准
随着深度学习、车联网边缘计算和5G通信技术的高速发展,自动驾驶正成为未来十年影响汽车行业的关键技术。传感器是自动驾驶系统感知外界环境的媒介,传感器之间的协同性和互补性是进一步提高自动驾驶安全性的关键。近年来,多传感器融合技术得到越来越多的关注,其中点云融合方法在三维目标检测和地图构建上的应用也逐渐增多。车联网边缘计算技术旨在赋予车辆边缘节点更强大的信息处理能力与内容传输能力,为车载应用提供更高效、
本文基于已经研制出的飞行仿人机器人原理样机,设计出一套实时嵌入式控制系统,实现飞行仿人机器人的闭环控制功能。首先,通过分析目前国内外机器人嵌入式系统设计的现状,分析得出目前主流机器人嵌入式系统具备三大特点,分别是无缆化、分布式结构以及良好的实时性。其次,结合原理样机的实时性仿真结果、硬件结构、功能需求以及主流机器人嵌入式系统设计特点,实现设计指标、硬件方案以及软件方案的制定。在设计指标层面上,根据
在深度学习和计算机技术日益发展的今天,基于深度学习的车辆目标检测算法在速度和精度上都比传统方法有着非常大的提升。但如今的车辆目标检测算法基本上还是基于边框的检测算法,有着算法复杂、计算资源高、量级参数等的问题,还有很大的提升空间。所以,如何能够简化算法的框架、降低参数量以及消除冗余计算成为了一项具有挑战性的工作。本文研究了基于热力图的车辆目标检测方法和加权特征融合方法,并且对深度聚合网络DLA-3
机器人在形如震后这种极端环境中执行探测、求援等任务时,由于震后环境的不确定性,会出现大型障碍物或者沟壑,此时机器人是否具备越障能力尤为重要。针对越障能力的提高,本文从动态越障入手,提出了基于涵道推进系统的双足机器人的规划方法和全身控制器。主要内容如下:(1)通过分析基于涵道推进系统的双足机器人动力学方程,给出动态越障的定义。(2)提出合理假设和推导带有涵道推进系统的双足机器人平衡模型,并得到基于此
智能化生活已经到来,机器人的发展也会愈发蓬勃,实现的的功能也来愈加强大且复杂,放眼全球,各类机器人层出不穷的出现在生活的方方面面,有聊天类的客服类机器人,有在生产线上不知疲倦工作的机器人,更有极少数高端的手术机器人等等,上至月球挖土,下至深海寻宝,它们给人们提供各色各样便利的服务。十四五规划提出了要加强老年人社会保障,以人为本,在复杂的社会多元化情况下,为老年人提供个性化服务保障老年人生活的质量。
随着无人机技术的迅猛发展,无人机已被广泛应用到人类生产生活中。如何方便快捷简单地与无人机进行交互成为了当前研究的一个热点。与无人机进行人机交互的方式有很多种,比如语音交互、人体姿态交互、人脸交互以及手势交互等,其中手势交互具有自然、方便、直观的特点,更适合用来与无人机进行交互。从应用领域方面来看,手势与无人机的交互在无人机的起飞降落、位置调整、视觉跟踪等方面有着重大的应用价值。本文设计了一个人机交
在数字经济时代,随着大数据和社交媒体应用不断地深入网络用户的生活,用户数量急速增长推动了社交网络的推荐信息技术的快速发展。社交网络平台不仅可作为用户获取和传播信息的有效渠道,而且可作为最新资讯和社会问题治理的重要媒介。为用户提供符合个人感兴趣的新闻是社交网络的重要任务,优秀推荐算法已经成为社交网络平台竞争的核心技术。然而,推荐算法也还存在歧义性、数据稀疏、爬取大量的无用信息等影响其性能的因素,因此
回归分析诞生于近代统计学时期,其起源可以追溯到一百多年前。回归分析作为一种数学模型,其本质是建立一条虚拟的回归曲线,使该曲线尽可能的接近研究的样本点,即它是研究多个样本点之间的定量关联的一项技术。在统计学领域,回归分析方法种类繁多,但当属普通最小二乘法最为经典。普通最小二乘法通过建立回归曲线,利用实际样本数据与虚拟曲线之间的残差,求取残差的平方和的最小值以获得数据的最佳匹配函数。因此,该方法适用于