基于过渡金属硫化物的新型离子电池研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:tlswedu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着工业化发展和人民生活水平日益提高,以及煤炭石油等化石能源的枯竭,绿色可持续性的清洁能源亟待被开发和利用。在此背景下,能量转换和存储的可充电电池在当今世界引起了广泛关注。在过去的几十年中,人们在制备和开发用于碱金属离子电池的过渡金属硫化物材料方面做出了巨大努力。然而,它们的电化学性能仍然受到转化反应过程中结构聚集和断裂的严重影响。本文主要将过渡金属硫化物中的二硫化钼和二硒化钼分别应用于溴离子电池和钠-锌双离子电池中,分别对电极材料、电解液以及工作原理进行研究。研究二硫化钼在溴离子电池中的应用。在这项研究中,我们使用具有卓越Br-存储特性的Mo S2纳米花作为正极活性材料,实现了高比容量(151 m Ah/g)和出色稳定性(超过5000次循环)的溴离子电池。通过一系列表征分析,证明Br-在充电过程中嵌入Mo S2中。在放电期间,Br-从Mo S2中脱出并移动到负极。这种可逆且稳定的化学作用为溴离子电池的嵌入/脱嵌提供了可行性。我们提出的新型溴离子电池在非室温条件下,依旧表现出良好的电化学性能。无毒绿色的新型溴离子电池有望成为锂离子电池的有力竞争者。探究二硒化钼在钠-锌双离子电池中的应用。混合双离子电池因其成本低、工作电压高和环境友好等优点而备受关注。在这项工作中,我们提出了一种基于Mo Se2纳米球的水系钠-锌双离子电池,并实现了水系混合双离子电池的快速充电。这种新型混合双离子电池在2C倍率下表现出134 m Ah/g的高比容量和优异的循环稳定性(循环寿命1000次以上)。此外,电池充电后5分钟可储存84%的电池容量,这显示了其在快速充电储能应用中的潜力。使用Mo Se2作为混合双离子电池电极材料,该研究为其他学者在双离子电池研究中提供了新的思路,具有重要的研究意义。
其他文献
在过去四十年中,我国经济快速增长和城市化,导致了二氧化碳排放量的急剧增长,我国政府面临着巨大的碳减排压力。在当前国家碳减排政策的制定主要集中在区域层面,区域间贸易隐含碳排放流动,可能会造成碳泄露,使得国家碳减排目标的实现变得困难。深入探讨区域间贸易隐含碳排放流动问题,有助于我国实现碳排放减排目标。随着国内区域一体化的快速发展和国内分工的不断深化,中间品贸易已成为区域间贸易的主要方式。中间品的反复跨
学位
核主泵是一回路中唯一的旋转装置,同时还担负承压重任,其长期稳定运行对经济效益和人身安全至关重要。而因核岛一回路内部时刻处于高温、高压、高辐射的状态,保持核主泵稳定运行具有诸多挑战,故国产化过程仍具有诸多完善空间。压水室为核主泵承压边界,且还是周向流出的导叶与单向流动的管路之间的唯一桥梁。在多重约束限制下,最终核主泵采用等截面压水室结构,但该结构会导致内部流场分布不对称,在出口段产生回流、二次流等复
学位
实现双碳目标是中国重大战略决策,也是我国应对全球气候变化的郑重承诺。碳捕集、利用与封存(CCUS)技术是实现双碳目标的重要手段,而源汇匹配技术是CCUS的重要环节。目前的CCUS源汇匹配模型主要基于汇整体封存量开展优化,不能基于实际布井工程对不同布井方案下的注入能力做出准确限制。而CO2地质封存的实施必须考虑布井方案,因此,随布井方案动态变化的封存汇特征对于实现源汇最优化匹配具有十分重要的意义。建
学位
天然气是优质高效、绿色清洁的低碳能源。加快天然气的开发利用可以有效推进我国能源生产和消费革命,构建清洁低碳、安全高效的现代能源体系。扩散作用是气藏内气体通过上覆盖层而损耗的主要方式之一,为了有效评估气扩散对气藏的破坏作用,必须深入探索气藏中气体通过盖层扩散过程的动态演化规律。基于以上背景,开展了气藏条件下气-液扩散的实验与模拟研究。提出一种应用低场MRI检测气体在纯水/水饱和多孔介质中的扩散过程的
学位
为了缓解温室效应引起的危害,CO2捕集、利用及封存技术(CCUS)得到快速发展,CO2地质封存、利用是减少温室气体排放的重要途径。通常会利用捕集到的CO2流体驱替难以开发的油藏或气藏,CO2流体中通常会含有杂质气体,杂质的种类与浓度会对运输与封存产生较大的影响。同时,关于CO2/CH4/N2三元混合物在页岩气或煤层气的驱替与吸附的相关研究也逐渐增多。掌握CO2/CH4/N2三元体系的热力学性质对于
学位
当前学前教育提倡课程游戏化发展的背景下,幼儿园开展的阅读教学活动对幼儿基础阅读能力和动手创造能力的培养与发展有着极为重要的意义与价值。本文以幼儿园课程游戏化为前提,结合园所实际与课题研究,深入探索了幼儿阅读教学活动中提升幼儿创造力的若干策略。
期刊
目前,玻璃化冷冻是细胞超低温保存的有效方式之一,其原理是使细胞快速降温,进而减少细胞内外冰晶的形成,从而有效的提高细胞存活率。但是如何实现超快速冷却是当前面临的难题。而喷雾冷却是当前最具有潜力的冷却方法,并且在多个领域有了广泛应用,因此本文基于液氮喷雾冷却的技术,发展一种超快速冷却方法实现细胞的玻璃化冷冻,主要采用欧拉-拉格朗日模拟方法对液氮喷雾冷却冷冻载体的传热特性进行研究,并且分析相关参数对其
学位
增大航空发动机涡扇前叶片温度是提升其推重比的重要手段,进而实现飞行器的高马赫数飞行,而此方法的技术难点在于解决发动机热防护系统这一瓶颈问题。目前,针对航空发动机部件热防护以及系统热管理问题,比较有效的技术手段是CCA(Cooled Cooling Air)技术:利用换热器降低冷却空气温度,从而增大能量利用率,而研发一种符合航空发动机要求的换热器是解决此问题的重要前提。在此前提下,本文采用多孔介质完
学位
碳捕集、利用和封存(Carbon capture,utilization and storage,CCUS)技术在缓解温室效应方面具有巨大的发展潜力。CO2提高页岩气采收率(CO2-enhanced shale gas recovery,CO2-ESGR)技术是CCUS的重要组成部分。页岩有机孔隙中CO2以及CO2驱替CH4的动态吸附特性可以反映动态吸附及驱替机理,对CO2封存和提高页岩气采收率具
学位
气化技术是提高煤与生物质资源利用效率的重要方式,气化反应动力学研究是煤、生物质气化反应研究的基础,对于加深了解气化反应过程以及气化炉的建模和设计至关重要。碱金属及碱土金属等矿物质对气化反应的催化作用是影响气化反应动力学的重要因素,其中碱金属钾和碱土金属钙因其价廉易得及其高催化活性而得到了许多研究者的广泛关注。煤、生物质中固有和负载钙、钾基催化剂的催化剂活性是影响其催化效率的主要因素,目前虽然已有大
学位