脱除CO的膜吸收过程研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:bvhd5467h
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该论文制备了不同装填率的一系列聚丙烯中空纤维膜组件,以中空纤维组件为核心,建立了一套自动化程度相当高的膜吸收实验装置.利用此装置,对影响脱除CO<,2>膜吸收过程的各参数进行了考察和探讨.结果表明,增大中空纤维内外的气、液流速和吸收液浓度,可以提高CO<,2>的传质通量;增大气相浓度,虽然会使传质推动力增加,但由于高浓度的CO<,2>会改变液相物理性质,使液相阻力增加,从而导致总传质系数降低;相同进气量下,组件装填率从0.4928﹪提高到21.12﹪,CO<,2>的吸收率随之增加;温度的适当提高会改变气液相的扩散系数及化学反应的增强因子,使CO<,2>的传质通量增大;作为吸收剂,相同摩尔浓度的单乙醇胺(MEA)水溶液比碳酸钾(K<,2>CO<,3>)水溶液的吸收效果好.
其他文献
随着支付宝、微信支付、电子银行的出现与快速发展,越来越多的电子交易数据以流的形式源源不断的进入风控平台,针对这类大规模实时数据流的快速存储和快速查询变得越来越重要。从风控平台的角度,处理海量流数据需要大规模集群,在满足高吞吐和低延迟的同时能向上为数据分析与模型建立提供分布式的轻量级数据服务已成为实时风控平台中一个亟待解决的问题。面对上述问题,本文主要做了如下几个工作:  首先,针对大规模数据流的快
学位
在纳米技术时代,由于晶体管特征尺寸越来越小,工艺偏差和掺杂效应等因素的影响越来越大,使得众核处理器的成品率不断降低。为解决这一问题,产业界一般采用“N+M”核级冗余容错设计机制。而众核处理器在具体使用时,由于各个核心的负载和所处的空间位置不同,造成各个核心产热和散热不均匀,进而导致处理器上出现一些温度很高的热点。处理器的热点区域将加速老化,大大降低其生命期可靠性。考虑到这一现状,本文以嵌入式流程序
肿瘤是威胁人类健康的一大杀手,不仅发病率越来越高,而且发病年龄也趋于年轻化。在我国,肿瘤患者的死亡率逐年上升。目前的肿瘤筛查方法,主要是通过临床手术以及细胞观测等方法判定肿瘤类型。这些方法基于形态学并且具有某些缺点,因为肿瘤的发生是一个多阶段逐步演变的过程,是多种复杂因素共同作用的结果,相同类型的肿瘤可能具有临床差异。因此,从分子生物学水平发现和鉴定与肿瘤相关的重要信息是生物信息学研究中的一个重要
含氮杂环化合物(NHCs)工业、日常生活大量使用,进入水体中造成了很大的危害。采用臭氧氧化法降解NHCs,研究了NHCs与O3的反应速率常数,并基于NHCs的不同氮原子数量和位置的结构特点,通过计算密度泛函理论(DFT)框架中前沿轨道中电子密度的分布,计算出NHCs的软度,预测NHCs的反应活性,结果显示NHCs的软度与反应速率常数呈正相关。通过质谱(MS)分析结合福井函数对臭氧直接氧化和自由基攻
金属配合物在诸多领域有着重要的研究意义,通过选用合适的配体和金属盐可以制备出大量含能配合物,从可增加传统含能材料的能量密度,并降低含能材料的敏感度等。本文分别以5-氨基-1H-1,2,4-三唑-3-乙酸(ATAA)、四唑(Tz)为配体和过渡金属盐制备出[Cu_3(ATAA)_3(H_2O)_7(OH)]?2NO_3、[M(ATAA)_2(H_2O)_2]?2H_2O(M=Zn,Cd)、[Zn(Tz
学位
由于天然气潜的巨大化利用价值,近十几年来Cl化学逐渐成为多相催化研究领域的热点,而作为由甲烷直接转化为乙烯的甲烷氧化偶联更是成为热点中的热点,备受重视。该文首先通过对其他学者工作的分析综合,从工程的观点出发,认为甲烷氧化偶联催化剂C烃选择性和反应尾气中烃尤其乙烯的含量将是催化剂开发的主要方向。对反应机理的分析认为,催化剂表面的电子性质、几何性质和反应条件决定催化剂的选择性,而对催化剂的分析则得出优
该文以聚氨酯、丙烯酸酯、丙烯腈、丙烯酸等为原料合成互穿网络聚合物,应用高温分解法和溶胶-凝胶法制备了纳米AlO和纳米AlO·ZnO复合粉体,将上述纳米粉体分散到互穿网络聚合物中,最终制得了纳米互穿网络聚合物涂料,研究了该涂料的性能和制备工艺.
学位
烷醇胺水溶液广泛应用于酸性气体的脱除,是21世纪分离CO、防止温室效应最有效最实用的关键技术,腐蚀问题是目前该技术最主要的制约因素之一,现已引起人们的高度重视.该文首次通过电化学方法和表面分析等技术系统地探讨了碳钢的阳极溶解行为与烷醇胺的CO吸收机理之间的关系.实验结果表明,氨基甲酸盐的生成是造成烷醇胺腐蚀性的主要因素之一,它具有很强的螯合作用,与Fe(Ⅱ)生成可溶性络合物,从而加速了碳钢的阳极溶
学位
该文利用柠檬酸络合法制备锂离子电池正极材料尖晶石型LiMnO,利用X衍射,循环伏安,充放电测试,交流阻抗等手段对其进行了研究.通过循环伏安测试发现在充放电过程中,锂离子的嵌入和脱出是分为两步进行的,而且灼烧温度越高,劈裂峰分裂的越明显,且更加尖锐.通过交流阻抗测试,发现活性物质在不同的电位下具有不同的电化学特征,当电位处在平台区时和处在非平台区时相比较,交流阻抗谱明显不同,电位处于非充放电平台区时
分子沉积自组装技术兴起于20世纪90年代,是一种制备纳米级超薄膜的新技术.该方法简便易操作,得到的自组装膜超薄有序,厚度可以实现分子水平上的调控,并且可以得到预先设计的层间结构,提供具有特殊功能的超薄膜材料.将分子沉积自组装技术用于蛋白质、酶等生物分子的超薄膜制备始于90年代中后期.由于该方法以静电相互作用力为推动力,减少了组装过程中对生物分子构像的破坏,较大限度地保持了生物分子的生物特性,因此是