微纳米复合结构有机光电功能材料的制备及其荧光和光电转换性质

来源 :中国科学院化学研究所 国家纳米科学中心 | 被引量 : 0次 | 上传用户:jintaijing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微纳米复合结构与光电功能材料有机结合,赋予功能材料新的智能特性将是研究智能材料的一个新领域。相对于无机材料,有机材料具有更好的光、电、热的可调控性和种类的多样性,近年来对有机材料光电性质的研究成为了一个新的热点。主要研究结果如下:   (1).采用阳极氧化铝模板的方法制备了不同直径的HPS纳米线,通过研究发现随着合成纳米线的模板尺寸的改变,HPS纳米线的聚集状态也改变,从而调控了纳米线的荧光发射峰位置。   (2).通过静电纺丝的方法以PMMA分子为基材,HPS分子为传感材料,制备具有自清洁效应的类荷叶结构的传感薄膜。研究发现类荷叶结构薄膜对金属离子的响应具有更高的灵敏度和更好的稳定性。   (3).在不进行化学反应的情况下,采用溶剂蒸汽诱导来调控HPS分子的聚集状态,实现了薄膜的荧光和浸润性的双重可逆转变。   (4).通过水模板自组装的方法,在具有光电转换性能的PDTG薄膜里引入有序多孔结构,提高了薄膜的光电转换性质。   (5).采用泡沫-聚合法制备了聚苯胺/聚乙烯醇复合大孔泡沫材料,并研究了形成泡沫的机理及泡沫材料的光电转换性能。发现大孔泡沫结构的引入提高了薄膜的光电转换性质。
其他文献
2001年7月1日,党中央在北京人民大会堂举行隆重纪念党的80周年庆祝大会。江泽民总书记出席大会并作了重要讲话。他系统地总结了中国共产党80年光辉历程和基本经验,全面阐述了“
硅烷化聚氨酯(SPU)密封胶是在聚氨酯密封胶和硅酮密封胶的基础上,开发研制出的一种新型密封胶,它以硅氧烷的固化原理代替了异氰酸根的固化原理,在性能上综合了聚氨酯密封胶和硅
随着科学技术的飞速发展,新材料的制备以及新合成方法的探索无疑是材料化学领域的两大研究热点。设计合成具有特殊结构性质的新型功能材料,发展基于传统自下而上和自上而下合成
研究分子导线通常需要回答两个基本问题:首先是分子结构与电子传输性能间的关系,其次是如何调控分子导线的导电行为。作为最典型的分子导线之一,齐聚苯乙炔的分子结构相对简单,且
数学课堂在许多学生眼中是沉闷和枯燥的,数学老师对于数学课堂的调控也是倍感吃力。然而,数学是一门重要的学科,所以,如何提高数学课堂的有效性是数学课堂教学的焦点。本文结合自身的教学实践和思考,认为要提高数学课堂教学的有效性,可以从以下几个方面着手。  一、打造富有艺术的课堂引入  好的新课引入不但能强烈地吸引学生的注意力,使学生在短时间内进入到学习的状态,而且能激发学生学习数学的兴趣。通过课堂教学实践
半导体量子点和贵金属团簇是一类新兴的荧光功能材料。在纳米尺度下,可以通过改变其组成、尺寸、形状、晶型和表面,进而控制调变其电学、磁学、光学和其他性质。特别是由于量子
光子晶体多功能化是近年来光子晶体领域中的研究热点之一。本论文通过对光子晶体材料、结构和性能的设计,成功地制备了三种具有特殊结构的多功能光子晶体材料。主要内容如下: 
学位
二氧化碳的有效利用和可再生生物质资源的高效催化转化对解决环境和能源问题具有重要的意义。本论文主要围绕硅基纳米线光电极上光电催化还原CO2和铌酸负载Pt纳米粒子上2,5-咲喃二甲酸(FDCA)加氢脱氧制己二酸(AA)开展了系统的研究并取得以下主要结论:针对光电催化还原CO2性能研究,由于p-Si具有独特的优势,是一种具有巨大潜在应用价值的光阴极材料。本论文通过金属辅助化学刻蚀法得到硅纳米线(SiNW
学位
红厚壳属植物(calophyllum)为藤黄科(Guttiferae),藤黄科植物有40余属,1000余种,其中红厚壳属植物约有200余种,主要生长在潮湿的热带丛林中,是一种常青木。在民间,红厚壳叶用作治疗
本工作的主要目的是设计制备性能优良的吸附剂,将其用于油田水中锶离子的吸附分离。制备了表面修饰的磁性吸附剂以及杂化凝胶吸附剂,对比研究了这些吸附剂在水溶液中对锶离子和