【摘 要】
:
土壤重金属污染是一种危害较大的全球性问题,而现有的土壤重金属检测方式多以实验室中大型仪器为主。这种检测方法需要经过风干、研磨称量、消解、配制样品溶液等大量的前处理工作,每个样品的制备需要1-2个小时,费时费力。而目前被广泛应用的现场直接检测仪器以激光诱导击穿光谱和X射线原子荧光光谱为主,这两种方式也存在这一定的缺陷,在现场应用时一般只用来进行污染地区重金属含量的初步筛查和半定量检测。因此开发一种便
【基金项目】
:
“研制基于微等离子体的土壤重金属快速检测仪”国家重点研发计划(2017YFD0801202-03); 国家区域创新中心科技项目(2017QYCX11); 山东省威海海洋经济创新项目(2017HYJJ0165)
论文部分内容阅读
土壤重金属污染是一种危害较大的全球性问题,而现有的土壤重金属检测方式多以实验室中大型仪器为主。这种检测方法需要经过风干、研磨称量、消解、配制样品溶液等大量的前处理工作,每个样品的制备需要1-2个小时,费时费力。而目前被广泛应用的现场直接检测仪器以激光诱导击穿光谱和X射线原子荧光光谱为主,这两种方式也存在这一定的缺陷,在现场应用时一般只用来进行污染地区重金属含量的初步筛查和半定量检测。因此开发一种便携式的,可以完成土壤直接进样检测,且检出限较低、定量精准的低成本重金属检测仪不仅具有较大的创新性而且具有较高的实际意义和商业价值。本课题主要研究了一种自主开发的、可实现土壤粉末直接进样检测的便携式土壤重金属检测仪器。该仪器利用电磁加热实现土壤中重金属元素的快速原子化,以介质阻挡放电微等离子体作为待测金属元素的激发源,结合所设计的光路系统,实现了现场快速检测分析,免去了繁琐的样品前处理过程。采用钨舟作为电磁加热介质和样品载体,螺旋式铜线圈作为磁感应线圈。以Lab VIEW编写的程序实现对仪器的控制,设计的软件可以完成监测波长、除水时间、原子化时间等关键参数的设置。该仪器由电磁加热单元、介质阻挡放电激发单元、气路系统、光信号采集和处理系统以及相应的电路系统构成。由便携式电池供电,微型触屏电脑控制,仪器全重只有7公斤左右,操作方便,体积小(40.5 cm(长)×30 cm(宽)×15 cm(高)),可携带至野外对土壤进行直接检测。所研发仪器的使用寿命长,功耗低,检测速度快(5 min内便可完成一个土壤样品的检测,且平均功率不超过118 W)。利用该装置可对土壤中汞、镉、铅、锌、银等元素进行同时检测,优化了载气流速、进样量、除水电压、基质的去除电压等相关实验条件,在最佳检测条件下中汞、镉、铅三种重要元素的检出限(LODs)分别为8.0μg/kg、17.8μg/kg、3.5 mg/kg(由于土壤中本底含量较高的原因,铅元素的检出限计算结果比实际结果高)。通过对土壤样品进行检测验证,证明了所研发装置的稳定性、可靠性和实用性。其性能完全满足对国家一级标准土壤中汞、镉、铅等重金属元素的检测要求。同时,所研发仪器还具有检测蔬菜等其他固体样品的潜力,是原子发射光谱和重金属检测研究领域的一项进步。
其他文献
新型可再生能源的开发一直是当今世界的热门话题。潮流能作为一种可再生能源,其资源储备丰富,有着很高的开发利用价值。本文将研究通过地面效应来提高振荡水翼式潮流能发电装置的获能效率问题,分析产生地面效应时水翼的水动力性能以及周围流场的结构,探讨地面效应的作用机理,研究水翼不同运动参数对获能效率的影响,为地效翼潮流能发电装置的研发提供一定的理论依据。本文利用STAR CCM+对高雷诺数下二维不可压缩非定常
温度测量在工业实践中具有十分重要的意义,随着红外测温理论以及相关仪器研制的快速发展,中高温领域成绩显著,但是低温测量仍有很大研究空间,特别是高速低温测量,提高其测温精度是一个重要的研究方向。本文以高寒地区轨道板高速红外测温系统为背景,从理论和实验两方面分析出了影响测温精度的两大主要因素:红外探测器温漂和环境温度干扰,并根据各自的作用规律针对性地设计了解决方案以提高测温精度。论文主要的工作为:(1)
学生安全涉及个人安危,事关家庭幸福,关系校园稳定。作为一名有着20多年工作经历的老班主任,我在多年的班级安全管理实践中探索总结出了安全教育第一要务、常态监管第一要素、家校共建第一要领"三个第一"的具体做法,在班级安全管理中收到了明显成效。下面就点滴感悟和体会同大家做一交流,希望能起到抛砖引玉的功效。
随着汽车行业的发展,对汽车零部件的制造及装配环节提出了越来越高的要求,特别是对发动机的制造工艺。在发动机缸体水管压装的生产过程中,国内大多数采用人工进行压装,效率低,压装质量较低。本文结合发动机水管的压装工艺,设计一条水管压装产线,并且基于PLC进行自动化控制,实现自动化生产,提高了生产效率和压装质量,降低了生产成本。本文首先分析了发动机缸体水管压装的工艺流程,并且对自动化实现的可行性进行分析。并
自动驾驶技术可以减小城市的交通压力以及交通事故率,也可以降低物流成本,提升工厂物料配送效率。无人车需要在复杂多变的环境中具备完善可靠的感知系统,尤其是在接收不到GPS信号的场景中,需要对周围环境进行重建以及实时自定位。因此,动态环境下的即时定位与建图技术(Simultaneous Localization And Mapping,SLAM)对于自动驾驶具有十分重要的意义。本文以激光雷达为传感器,以
由于自然风的存在,汽车在实际路面上行驶时不可避免的会受到侧风的影响,尤其是当汽车在空旷的路面、隧道口等地方行驶时,很容易受到侧风的作用,且汽车车速越快,受侧风影响产生的安全隐患就越大。据统计每年高速公路上产生的交通事故,有近23%是由侧风引起的。但过去国内外学者对汽车空气动力学的研究还主要集中在纵向风,为降低风阻和提高燃油经济性,少数对侧风的研究大多也采用的是稳定风,不具有普适性。本文基于现实场合
自动驾驶测试是保证自动驾驶技术安全的关键环节。目前自动驾驶实车测试存在着成本高、不易重复、灵活性差等缺点;虚拟仿真测试了克服实车测试上述缺点的同时,也带来了由于车辆动力学模型和传感器模型仿真精度不高造成的性能下降,经过仿真验证后的自动驾驶技术并不能直接进入下一步验证。本文围绕面向自动驾驶测试的虚实场景融合技术展开研究,基于场景搭建技术和传感器仿真技术搭建了自动驾驶虚拟场景,实现了虚实场景中的图像融
不了解移动机构与地面之间的相互作用机理可能会导致严重后果。2009年NASA火星探测器勇气号在火星特洛伊沙地中因为车轮刨土导致严重的滑转失效,最终使好奇号陷入松软的沙丘中不能移动。机遇号的车轮也曾在火星梅里迪亚尼平原表面沉陷达到30cm,后来艰难脱困。足式步行车具有足-地接触点离散、落足点调整灵活、可以跨越复杂障碍物等优势,在军事、星球探测、核电站救援等方面有着广阔的应用前景。高性能足式步行车可以
激光拉曼水温测量技术可快速测量大面积水域不同深度海水的温度,具有传统接触式测量和微波遥感等测量技术不可比拟的优势,对气候监测、军事等领域具有重要意义。但现有激光拉曼水温测量系统存在系统结构复杂,测量速度慢,造价高等缺点。随着探测范围向深海和深空原位探测以及实时安检等众多领域转移,开发一种低成本、小型化、强探测能力的拉曼水温测量系统变得越来越有意义。针对上述问题,本课题利用研究所自主研制的便携式拉曼
目前国内对于压电式切削测力仪研究成果较少,国内使用的切削测力仪大多为国外进口。而且价格昂贵。因此,本课题针对实验室数控机床的测力需求以及国内压电切削测力仪研究的不足,设计了一种基于PVDF压电薄膜的高频动态压电式切削测力仪,用来实现三维切削力的测量。首先,分析现有典型测力平台结构与性能以及PVDF压电薄膜的特性,结合压电式和电阻式测力仪的优缺点,设计出一款具有高刚度和高灵敏度的测力平台。对测力平台