Al合金中Mg、Cu溶质原子晶界偏聚的第一性原理研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:ying33809
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铝及铝合金具有诸多优秀的物理化学性能,如低密度、高强度、耐腐蚀等,因此广泛应用在航空航天和汽车行业。Mg和Cu是Al合金中的主要合金元素,其本身具有固溶强化效应。实验发现Mg和Cu原子会在晶界上形成大量偏聚,对晶界性能有着较大影响,进而影响合金性能。因此,研究Mg、Cu溶质原子的晶界偏聚行为具有很强的现实意义,能够帮助理解偏聚现象对材料性能的影响机制。然而,传统实验难以实现对晶界偏聚行为进行原子乃至电子层面的研究,以往的计算模拟工作也大多集中于某一种特定晶界,使得对溶质原子晶界偏聚现象的理解和认识还不够深入全面。本文采用第一性原理计算的方法对Al合金中Mg、Cu溶质原子的晶界偏聚现象进行了研究。主要的研究工作如下:(1)Mg、Cu溶质原子偏聚可以显著改变晶界能量特性。通过计算Mg、Cu溶质原子在五种晶界不同位置偏聚时的偏聚能,确定了溶质原子的偏聚位置以及偏聚倾向,结果表明无论Mg还是Cu原子偏聚均有较强的偏聚倾向。其中,Cu倾向于向晶界间隙偏聚,而Mg倾向于向晶界置换位偏聚。另外,Mg原子偏聚能随偏聚浓度升高呈现升高趋势,而Cu原子的呈现下降趋势;对晶界能的计算结果显示同时Cu和Mg能降低晶界能,提高晶界稳定性,并且均随着晶界偏聚浓度的升高,晶界能持续下降。Cu的效果要优于Mg,Cu偏聚可以将晶界能降低至负值。(2)Mg、Cu溶质原子偏聚影响晶界的理论强度。通过第一性原理拉伸实验计算了Mg、Cu偏聚对不同晶界强度的影响,结果显示Mg将降低除Σ9(221)晶界以外四个晶界的晶界强度,并且随着偏聚浓度升高,晶界强度逐渐降低。而Cu会增强五种晶界的晶界强度,并且晶界强度随着偏聚浓度升高而升高。通过对电荷密度结果进行分析发现,Mg原子与周围Al原子之间极少电子相互作用,因而降低晶界电荷密度;而Cu原子与Al原子之间存在较强的电子相互作用,并形成新的金属键。(3)Mg和Cu原子的复合偏聚极大影响AlΣ5(210)晶界特性和晶界强度。对晶界能计算结果发现复合偏聚进一步降低了晶界能,在偏聚浓度最高时,晶界能下降接近两倍。通过对晶界强度进行计算发现Cu能够弥补Mg原子的弱化作用,并且在高偏聚浓度下强度进一步提升,高于单一Cu偏聚的晶界。
其他文献
煤矿冲击地压灾害随着开采深度的增加会愈发严重,造成严重的人员伤亡与财产损失。提高巷道液压支架支护能力是防范冲击地压灾害的重要手段之一。液压支架中加入防冲吸能器,通过吸能器变形耗能吸收冲击地压能量能为液压支架开阀排液提供缓冲时间,提高支架-围岩耦合支护体系支护能力。为了有效防范冲击地压灾害,提高液压支架支护能力,亟需研究性能更加优良的防冲吸能结构。本文将蜂窝结构引入冲击地压巷道支护中,结合试验与数值
学位
节能环保是中国当前的基本国策,同时生态环保也是中国经济社会发展的重要目标。随着金属材料的日益发达,高效快捷、绿色无污染的有机缓蚀剂的研发,已经成为目前化工材料领域的研发热点。有机离子液体被称为“可设计型绿色液体”在电化学领域被广泛应用,由于这些高分子材料除了具有良好的导电性和电化学窗口较宽等优点外,还具有超强的自聚集特性,故具有巨大的应用潜能;其次相对于含卤离子液体,非卤代离子溶液在保持甚至提高其
学位
针对机器人运用场景,其发展已趋向于小型化、家用、医疗领域等;协作机器人作为机器人关节力反馈的研究的主要载体,其关节力感知能力是指其对外界力信息的感知和测量能力,是其完成力交互与力控制的基础;在此之前,通常采用模块式关节力矩传感器来感知关节力,但要解决机器人的整体刚度和模块式关节力矩传感器的定位精度,还需要进一步的研究;而作为关节驱动部件的谐波减速器,则是最好的载体。本文以礼帽型谐波减速器为主要研究
学位
在工业生产活动中,通过对机械设备布置准确且有效的状态监测和故障诊断系统是保障机械设备长期安全可靠运行,及时诊断和识别出故障类型并进行预警,最终避免出现严重事故的重要手段。无线传感器网络(Wireless Sensor Networks,WSN)因能有效避免有线监测时存在的不足,而被越来越广泛地应用于机械设备故障诊断领域。然而随着传感器节点数量的增加、监测时间的增长,针对机械设备监测而采集的数据呈现
学位
课题来源于国家重点研发计划项目“高性能齿轮动态服役特性及基础试验”(项目号:2018YFB2001300)及重庆市技术创新与应用发展专项“高性能齿轮制造流程性能调控研发及应用”(项目号:cstc2019jscx-mbdx X0006)。齿轮是机械传动系统中应用最广泛的重要部件之一。随着航空附件机匣、风电齿轮箱、舰船、特种车辆、新能源汽车、工程机械等整机装备对传动系统功率密度、承载能力和可靠性的需求
学位
随着车辆数目的逐渐增多,道路拥堵日渐严重。规划新修道路固然能够缓解现有拥堵,但从长远来看,拥堵问题与新修道路交替出现,周而复始,边际效应递减导致这种方法并不能明显改善拥堵。在这种情况下,队列控制因其能够减少成员车辆速度波动,缩短跟车间距,在现有道路条件下提升道路利用率,缓解拥堵而受到广泛关注。随着自动驾驶和车间通讯技术的发展,具备自动驾驶和车间通讯能力的车辆越来越多,为队列控制的落地提供了一定的基
学位
流态化还原炼铁工艺因可直接利用细粒径铁矿粉和非焦煤资源而成为了最具发展潜力的低碳炼铁工艺之一。流态化炼铁的还原气体主要是CO-H2混合气体,一方面要满足还原反应的需要,其还原行为相较于单一气体更加复杂,需要进一步探究;CO-H2还原铁氧化物本质上为CO和H2争夺氧原子的竞争过程,研究两种气体之间的竞争关系有助于加深对还原规律的认识;另一方面为保证铁矿粉处于流态化状态,还需要有充足的气体流量,这就导
学位
轻质高强Al-Zn-Mg-Cu合金是航空航天领域常用的结构材料,其中7050合金是目前该领域应用最广的铝合金。为了进一步提升合金的强度,同时确保其具有良好的塑韧性和耐蚀性,在7050合金成分的基础上增加Zn含量、降低Mg和Cu含量,发展了Al-7.7Zn-1.8Mg-2.0Cu合金,该合金有望成为航空航天领域新一代的高强铝合金。由于材料仍处于研究试制阶段,如何通过固溶和时效热处理工艺优化其综合性能
学位
随着机器人技术的广泛应用,机器人面向复杂工作环境的适应能力越来越受到重视。本课题的研究背景是风洞中特种设备,所涉及的成型机构含有柔性部件,并处于具有复杂载荷的流场环境。为保证成型精度和稳定性,针对平面并联机构驱动部分,提出一种运动冗余并联机构,并展开了运动学、空间刚度、刚度调制和振动抑制理论方面的研究,主要研究内容如下:(1)为规避奇异位形,考虑末端位姿精度和关节轨迹的平滑性,提出了一种基于速度级
学位
化学农药的使用在全球造成了许多严重问题。水稻幼苗对低温有极高的敏感性,将壳寡糖作为一种新型生物农药应用于水稻生产并帮助水稻抵御低温胁迫势在必行。本实验选取明恢63水稻,通过模拟水稻幼苗从正常生长到遭遇低温再到复性的全过程,测定水稻幼苗对应时期的生理生化指标,采用非标记定量技术对水稻幼苗的差异蛋白进行鉴定分析并研究其代谢通路,探究壳寡糖对水稻幼苗抗击低温胁迫的诱导机理,针对光合作用途径和淀粉蔗糖代谢
期刊