论文部分内容阅读
含碳分子广泛存在于星际介质中,它们在恒星、原始行星、小行星的形成过程中以及研究生命的起源中都扮演着重要的角色。这些含碳的分子大多是碳簇分子,包括纯碳簇(C2,C3等)和取代碳簇(C2S,C8H,HC11N等)。在烃燃烧的火焰中和其它的能形成烟灰的体系中也有碳簇的存在。碳簇还是许多化学反应的中间体,某些碳簇还具有特别的电学性质。由于它们和天体物理学、宇宙化学、燃烧过程、分子电子学以及材料科学都相关,对碳簇的研究引起了人们广泛地关注。链状碳簇可分为两种,类似累积烯结构的和类似聚炔结构的。由于它们具有极高的反应活性,在实验室中难以合成。计算化学不需要在实验室中合成或者提取出物质,就可以预测分子的各种性质,而且预测值和实验值通常符合得很好。作为计算化学的一个重要组成部分,量子化学可以做高精度的计算,对小分子体系的各种性质做出理论预测。激发态的研究对材料科学、发光科学以及星际介质化学都很重要,因此,本论文就以量子化学为工具,研究碳链簇合物的电子光谱性质,为实验以及太空观测提供理论依据。所选体系很典型,很广泛,有质子化阳离子体系CNH+,有等电子体系CNS、CNCl+,有阴离子价等电子体系C2nO–、C2nS–、C2nSe–,也有碳链两端同时被取代的中性分子体系PC2nP。量化计算的方法如下:体系基态的平衡几何构型是用密度泛函理论优化得到的,同时计算谐振动频率和红外强度,以确定所优化构型的稳定性。激发态的几何构型是用完全活化空间自洽场的方法优化得到的。在所优化的几何构型下,用完全活化空间二阶微扰理论(目前公认精度最高的计算方法之一)计算了体系的垂直激发能,垂直发射能和垂直解离能。相应的阵子强度是用态与态之间的跃迁偶极矩来计算的。对体系CNS、CNCl+,单态-叁态跃迁可能性用自旋-轨道耦合组态相互作用方法(SOC-CI)来估算。计算表明,理论预测值和可获得的实验值符合得很好。计算不仅对实验中的谱峰给出了指认归属,而且还预测了一系列新的谱峰以及一些实验室尚未合成的体系的电子光谱。取代碳链簇合物的许多性质都具有奇偶效应,即含奇数个碳原子的体系与含偶数个的性质不同,详细如下:1.一般来说,对所选择的这些碳链体系,大多数直线构型是稳定构型。对CNH+、CNS和CNCl+体系,当N为奇数时,基态是单重态X1Σ+,具有···π4σ2π0或者···σ2π4π0的电子组态;当N为偶数时,基态是三重态X3Σ-,具有···π4σ2π2π0的电子组态。对价等电子体系C2nO-、C2nS-和C2nSe-来说,基态是双重态X2Π,具有···π4σ2π3π0σ0的电子组态。对两端同时被磷原子取代的磷炔分子PC2nP来说,基态是单重态X1Σg+,n为奇数时,电子组态为···(πu)4(πg)4(πu)0(πg)0;n为偶数时,电子组态为···(πg)4(πu)4(πg)0(πu)0。2.随着碳链体系的增长,CNH+、C2nS、C2nO–、C2nS–和C2nSe–中碳原子与杂原子之间的键长C–X (X = H, O, S, Se)逐渐减小,C2nCl+、C2n-1Cl+和C2n-1S中碳原子与杂原子之间的键长逐渐增加,PC2nP中碳原子与杂原子之间的键长基本保持不变。CNS中C–C键长具有类似累积烯的结构特征,趋于平均化,而在离子体系CNH+, CNCl+、C2nO–、C2nS–和C2nSe–中,C–C键长具有单叁键交替的结构特征。可能是因为聚炔结构能分散离子电荷,使离子簇合物更加稳定。3.计算得到的振动频率结果表明,所有体系的最小弯曲振动频率都很小,且随着体系的增长,频率越来越小,相应的强度也逐渐减小,甚至几乎消失,这些分子是柔性分子。4.随着碳原子数的增加,所有体系的偶极矩逐渐增加,而转动常数逐渐减小。一般地,偶极矩从小到大的次序为CNCl+<CNH+CNS<CNO-<CNS-<CNSe-。5. CNCl+、CNH+和CNS中杂原子带正电荷,阴离子体系CNO-、CNS-和CNSe-中杂原子带负电荷。随着体系的增长,杂原子上所带电荷逐渐减小。与端基原子相连的碳原子带负电,链中间的碳原子带正电。6.同一体系中,含有奇数(或偶数)碳原子的体系的激发态具有相似的能级次序;对不同体系,CNH+、CNS和CNCl+,以及C2nO-、C2nS-和C2nSe-的激发态也具有相似的能级次序。一般地,随着碳链体系的增长,到相同激发态的垂直激发能逐渐减小,垂直发射能也逐渐减小。由于激发态的振动弛豫,发射光谱相对于吸收光谱出现了红移。7. SOC-CI计算表明,含偶数个碳原子的C2nS和C2nCl+中禁阻的21Σ<sup>+←X3Σ-跃迁可能会发生,而含奇数个碳原子的C2n-1S和C2n-1Cl+中单叁态跃迁的阵子强度都很小,叁重激发态很难通过直接单-叁态跃迁达到。8.比较计算到的PC2nP的垂直跃迁能和电离能与文献报道的NC2nN、HC2n+1N、NC2nP和HC2n+1P的垂直跃迁能和电离能可发现,PC2nP的垂直跃迁能和电离能最低,NC2nN的垂直跃迁能和电离能最高。前者可以由电子离域效应来解释,后者可以用端基杂原子的电负性来解释。而且还得到了垂直跃迁能和电离能与体系大小之间的解析表达式,依此可以预测较大体系的相关性质。