顶张力立管外流涡激-内流密度变化的动力特性研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:abc16900
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在近海及深海油气资源的开采中,顶张力立管具有输送效率高、连续性好和运输量大等优点,得到了广泛的应用。在海洋环境中,顶张力立管势必会受到外界海流和洋流等流场的作用。当外界来流具有一定的流速时,流经管道的尾流场中将会出现漩涡脱落的现象,致使管道周围的流体压力发生动态变化,从而激发管道发生振动,即涡激振动。涡激振动涉及到外界流场与管道结构之间的流固耦合作用,具有高度的非线性特性。另外,由于海底油气分离技术和成本的限制,一般采用管道对海底油气井产出的石油和天然气直接进行混合输送。此时,管道内部为石油和天然气组成的气液两相流。气体和液体在流动的过程中容易发生变形、分离和聚集,致使管内流体的质量和密度发生变化,从而激发管道发生振动。管内流体与管道结构之间也存在着较强的流固耦合作用,具有较高的不稳定性和随机性。
  在外流与内流的联合作用下,顶张力立管的振动涉及到外界流场-管道结构-管内流体的多场耦合作用,其动力响应十分复杂。为了确保管道的安全性、稳定性和耐久性,国内外众多学者和专家对此进行了深入的研究,并取得了丰硕的研究成果。但是,大多数的研究通常将管内流体简化为均质的单相流或者以单相流的理论分析两相流及多相流的影响,忽略了管内流体的质量和密度随时间和空间发生的变化。鉴于此,本文对外流与内流联合作用下顶张力立管的动力响应特性进行了深入的研究,并重点考虑了管内气液两相流流体质量和密度随时间和空间的变化。本文探索了外界流场对管道产生的涡激振动,管内气液两相流流体密度变化对管道的激励作用,以及外流涡激与内流密度变化联合作用下顶张力立管的动力响应特性,具体的研究内容和结论如下:
  (1)单独分析外界流场对管道的激励作用。分析外界流场流经管道对管道产生的水动力,包括涡激升力和拖曳力,考虑瞬时相对来流速度的影响,并采用尾流振子模型刻画涡激升力系数的变化,从而建立了外界流场激发管道发生涡激振动的水动力模型。将水动力模型用于预报弹性支撑刚性圆柱的涡激振动和均匀流或者剪切流作用下顶张力立管的涡激振动,并将预报结果与试验结果进行对比,验证了本理论模型的合理性和有效性。进一步,考虑了顶张力立管振动过程中的弯曲应变,对管道结构的疲劳损伤指数进行了计算,计算结果较为理想。当前建立的水动力模型能够用于实际工程中对顶张力立管的涡激振动进行有效地预报,并且能够合理地评估管道结构振动的疲劳损伤。
  (2)单独分析管内气液两相流对管道的激励作用。分析管道输送石油和天然气组成的气液两相流,管内具有多种流型,包括:气泡流、段塞流、块状流和环状流等,指出管内流体质量和密度的变化能够导致管道发生剧烈的振动。采用数学模型刻画管内流体的密度随时间和空间发生的变化,并对其进行改进,使流体密度的变化具有行波传递的特性,更符合实际情况。对微段控制体内流体质量的变化率进行推导,发现改进的流体密度变化数学模型满足流体流动的质量守恒定律。随后,采用动量定理并结合力平衡的原理,建立了管道输送气液两相流考虑流体密度变化的动力控制方程。对控制方程进行无量纲化,并采用有限差分法和Runge-Kutta法对其进行数值求解。通过与试验结果进行对比,验证了本理论模型的合理性和有效性。本理论模型能够合理地描述管内气液两相流流体密度的变化,能够有效地预报在管内气液两相流流体密度变化的激励下管道的振动响应。
  (3)进一步分析管内气液两相流流体密度的变化对管道的激励作用。分析管道的振动控制方程,发现管内流体密度随时间发生变化将对管道造成参数激励的作用。采用Galerkin方法对管道的振动控制方程进行离散,并进行降阶,得到微分矩阵方程,进而求解管道系统的特征复频和固有频率。随后,基于Floquet理论判定参数激励系统的稳定性及不稳定性,将参激共振的发生条件与试验结果进行对比,验证了本理论模型的有效性。采用本理论模型,详细地分析了管内流体的质量比、流速、压强和管道端部的轴向力、材料的粘滞阻尼和粘弹性阻尼对管道参数激励不稳定性区域的影响。研究表明:管内流体的质量比越大、流速越大、压强越大、管道端部的轴向力越小、材料的粘滞阻尼和粘弹性阻尼越小,参数激励共振的不稳定区域越宽,管道系统更不稳定。据此,给出了工程中防范参激共振发生的建议,比如:增加管道端部的轴向力或者提高管道材料的阻尼性质。
  (4)综合分析在管外流场和管内气液两相流流体密度变化的联合激励下,顶张力立管的动力响应特性。采用水动力模型模拟外界流场激发管道发生的涡激振动,并利用改进的流体密度变化模型描述管内气液两相流流体密度的变化,根据Hamilton原理推导了管外流场和管内密度变化流体联合作用下,顶张力立管的动力控制方程。对控制方程进行无量纲化,并进行数值求解,将理论模型的计算结果与试验结果进行对比,验证了本理论模型的合理性和有效性。采用本理论模型,探索了外流涡激和内流参激共同作用下管道的动力响应特性。研究表明:在参数激励的稳定区域内和不稳定区域内,内外流的联合作用将使管道振动响应的幅值变大或者变小;当管道涡激振动的主导模态被管内流体密度的变化所激发时,管道的振动响应将会发生较大的改变;由于激发模态的贡献作用或者不同激发模态之间的相互竞争,管道振动响应的时间-空间分布位移将变得不均匀、不规则、不具有周期性,管道的振动响应将会出现多个频率。进一步,分析了内外流作用下管道结构振动的疲劳损伤,指出:管内流体密度的变化将使管道振动响应的疲劳损伤变大,尤其是在参激共振时。
  (5)以某顶张力立管为例,分析不同外界流场和管内气液两相流流体密度变化对管道的联合激励作用。首先,考虑管道输送均质的石油,计算管道系统的固有频率,并与已有结果进行对比,进一步验证了本理论模型的有效性。其次,考虑管道输送石油和天然气组成的气液两相流,分析了管内流体的流速、流体的平均密度和管道顶端的张力对管道系统固有频率的影响。研究表明:管内流体的流速越大、流体的平均密度越大、管道顶端的张力越小,管道系统的各阶固有频率越小。进一步,考虑管内气液两相流流体密度变化对管道造成的参数激励作用,依据西非海域和我国南海北部海流场流速的分布情况,分别将外界流场取为均匀流场和剪切流场,探索了管内流体密度的变化对均匀外流和剪切外流作用下管道振动响应和疲劳损伤的影响。研究表明:当管内流体的密度随时间和空间发生变化时,在均匀外流或者剪切外流的作用下管道的振动响应将会变得不均匀,管道结构振动的疲劳损伤将会增大。
  (6)设计了气液两相流的试验装置,开展了管道输送气液两相流的试验。试验系统主要包括供水系统、供气系统、测试管道、位移测量系统和压强测量系统。采用高精度的激光位移传感器测量管道振动的位移,利用高速摄像机拍摄管内气液两相流的流动状态,利用高精度的压强传感器测量管内流体的压强。首先,通过自由衰减试验,测量了空管和满水管道的固有频率和阻尼,发现当管道中充满水,管道系统的固有频率将降低,阻尼比将增大。随后,在输水管道中逐渐加大空气的输入流量,探索了管内流体由水到气的变化过程。试验结果表明:在管内流体由水到气变化过程的中间区域,管道将会发生剧烈的振动,振动响应的频率将变大;随着气体输入流量的不断增加,管内流体压强的变化更为剧烈,平均压强将变大。
其他文献
学位
学位
学位
学位
学位
学位
学位
学位
学位