论文部分内容阅读
选区激光熔化成形(Selective laser melting,SLM)技术具有自定义形状设计、个性化定制、高加工精度、节约资源、加工周期短和智能优化零件性能等优势,因此在航空、医疗、教育、能源等国计民生重要领域均具有巨大的应用前景。然而,在SLM成形部件大规模应用之前,其力学性能特别是长期服役性能仍存在许多亟待解决的关键科学问题。本论文选取SLM成形Inconel 718合金作为研究对象,开展了适用于小微样品高温蠕变实验系统的搭建、SLM成形合金三维空间晶粒结构表征、热处理条件及成形样品特性(取样位置、加载方向及表面状态)对材料高温蠕变性能影响的一系列研究。本研究对于澄清SLM成形的Inconel 718合金组织结构特点、优化高温蠕变抗力的高温合金SLM成形工艺参数以及建立SLM成形合金部件高温力学性能认证评价方法具有重要的理论指导意义和应用参考价值。论文获得的主要研究结果如下:调研了小微样品蠕变研究现状和现行行业标准,针对实验需求,设计并开发了两套小微样品高温蠕变测试系统:小冲杆蠕变测试系统和具有数字图像相关技术表征功能的小微样品单轴蠕变测试系统。小冲杆蠕变测试系统可以在室温~800℃、载荷50~1000 N的条件下对样品实施具有氩气保护的小冲杆蠕变性能评价,载荷精度可达±0.1 N,变形分辨率为10 μm;单轴蠕变测试系统可以在室温~800℃、载荷0~2000N的条件下对样品实施单轴蠕变性能评价,载荷精度可达±0.1 N,变形测量分辨率可达0.09μm。在小微样品单轴蠕变测试系统中,采用数字图像相关技术可以对小微样品单轴蠕变过程中的全场瞬时应变进行测量。通过验证实验,证明了两个设备对小微样品的高温蠕变性能表征具有独特的优势,设备测量结果正确、可信。考察了90°交叉打印成形的Inconel 718样品中熔池的交互作用与晶粒三维空间异质结构之间的关系。发现,打印成形的Inconel 718样品由长度可达1 mm的细长柱状晶和平均高度为81.3 μm的粗大V形晶粒组成。样品中呈现出晶粒尺寸和织构强度的周期性分布。熔池心部重叠位置的织构强度和晶粒尺寸均达到极大值,在此处形成外延生长的柱状晶。熔池边缘重叠位置的织构强度和晶粒尺寸均达到极小值,在此处形成层层叠加的V形晶粒。基于此,建议把周期性结构简化为组织结构单元,对组织结构单元进行SLM成形Inconel 718合金力学分析和模拟更为合理。考察了SLM成形Inconel 718样品与传统锻造、铸造成形Inconel 718样品在组织结构、小冲杆蠕变性能等方面的差异。结果表明,SLM成形Inconel 718表现出与传统锻造和铸造成形Inconel 718不同的小冲杆蠕变性能和断裂行为。在650℃/600 N条件下,沿打印方向(Building Direction,BD)加载的SLM Inconel 718样品的短时小冲杆蠕变寿命和锻态样品的蠕变寿命相当,但远低于铸态样品的蠕变寿命。晶界上分布的Laves相是导致SLM成形样品小冲杆蠕变断裂的主要原因。BD方向加载导致柱状晶晶界与局部位置的拉应力垂直,进一步降低了样品的蠕变寿命。在SLM成形样品中,“道-道”熔池附近不同方向的晶粒和枝晶导致了裂纹扩展发生偏折。研究了不同热处理态SLM成形Inconel 718合金在不同加载方向上的小冲杆蠕变(Small Punch Creep,SPC)性能,分析了热处理制度和加载方向对蠕变寿命和开裂行为的影响。发现,相同方向加载下,均匀化/时效的HA1处理态样品的小冲杆蠕变寿命最长,而固溶/时效的SA处理态样品的小冲杆蠕变寿命最短。这是因为HA1处理态样品晶界处有害的δ相较少,且晶粒内增强的γ’和γ"强化相较多,而SA处理态样品的析出相分布与之相反。完全再结晶热处理(HA2热处理)可提高BD方向加载的Z样品小冲杆蠕变寿命,但降低了扫描方向加载的X样品蠕变寿命,使两者寿命相当。以柱状晶为主的样品小冲杆蠕变抗力优于晶粒尺寸较大的等轴晶样品。相同热处理条件(HA1,HSA,SA)下,X样品的小冲杆蠕变寿命比Z样品的寿命更长,这主要是空间多级晶粒结构导致的。理论计算表明,在SLM成形过程中,较高的能量输入或较大的熔池重叠率有助于降低V形晶粒的面积百分比,从而进一步提高样品的小冲杆蠕变寿命。考察了取样位置、加载方向和样品表面状态对样品单轴蠕变性能的影响规律。结果表明,底部样品因再结晶程度高,组织中残留的V形晶粒较少,蠕变寿命最高,而顶部样品中存在大量的V形晶粒,因而蠕变寿命最低。平行于打印方向加载的样品(0°样品)因裂纹受柱状晶约束不易横向扩展,因而具有较长蠕变寿命,而垂直于打印方向加载的样品(90°样品)因裂纹在一定程度上容易沿横向柱状晶晶界扩展,蠕变寿命较短,与打印方向城45°加载的样品(45°样品)的受力状态比较复杂,裂纹呈网状分布,产生67°方向的倾斜裂纹,因此,蠕变寿命最短。粗糙表面的样品蠕变裂纹萌生于表面缺陷位置,其蠕变寿命略低于光滑样品。