基于非晶硅钌薄膜的光电突触器件研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:yk946524
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对人类而言,有近八成的外部信息是通过眼睛获得的,所以视觉仿生系统一直是人工智能领域的重要研究方向。使用电学突触器件构建视觉仿生系统时需要借助图像感知模块对光信号进行获取和转换,增加了系统的复杂度和功耗。光电突触器件可以直接对光信号进行感知、计算和存储,相比电学突触器件具有更低的功耗、更高的带宽和更低的串扰,被认为是构建视觉仿生系统的最佳选择。目前为止,用于模拟突触行为的外部激励光信号多为紫外光或蓝光,光电突触器件在带宽方面的优势尚未完全体现。本文基于非晶硅钌(a-Si1-x:Rux)薄膜,采用磁控溅射的方法,设计并制备出了ITO/a-Si1-x:Rux/ITO和ITO/SiOy/a-Si1-x:Rux/ITO两种结构的光电突触器件,测试和研究了它们的电学、光学和突触性能,讨论了两种器件的工作机理。具体的研究成果如下:(1)a-Si1-x:Rux薄膜是一种低阻、高吸收的近红外敏感材料。基于a-Si1-x:Rux光敏薄膜构建的ITO/a-Si1-x:Rux/ITO光电突触器件,在450 nm~905 nm宽光谱范围内具有一定的持续性光电导效应,可以完整地模拟双脉冲易化行为。但是,由于器件的持续性光电导效应较弱,无法进一步实现短时可塑性向长时可塑性的转换。(2)相较于ITO/a-Si1-x:Rux/ITO光电突触器件而言,ITO/SiOy/a-Si1-x:Rux/ITO光电突触器件具有更加明显的持续光电导效应,光响应电流随SiOy层厚度的增加而减小,随SiOy层含氧量的增加而增加;持续性光电导效应随SiOy层厚度的增加而增强,随SiOy层氧含量的增加而减弱。插入的SiOy功能层对优化后器件的持续光电导效应,起到了积极的势垒高度调控作用。(3)ITO/SiOy/a-Si1-x:Rux/ITO忆阻器件,能在光激励下实现双脉冲易化、短时可塑性向长时可塑性转换以及学习经验等多项突触功能;基于ITO/SiOy/a-Si1-x:Rux/ITO光电突触阵列,还能实现灰度图像预处理和虹膜效应等视觉仿生功能验证。此外,ITO/SiOy/a-Si1-x:Rux/ITO突触器件还具有电学忆阻特性,能够通过电激励的方式实现阻态的连续调控,具备作为电学突触应用的潜力。
其他文献
高质量发展是全面建设社会主义现代化国家的首要任务。“四化同步”旨在破解发展的不平衡不协调矛盾,其本身蕴藏着深邃的高质量发展之道。高水平推进“四化同步”有利于提升全要素生产率,深化城乡协调发展,促进高水平供需匹配,提升安全发展水平,形成高质量发展动力源。在中国式现代化新征程上谋划“四化同步”,要坚持问题导向和系统思维,聚焦创新能力锻造、市场主体再造、现代产业矩阵、功能载体建设、城乡高效融合、补齐关键
期刊
随着众多柔性功能材料的不断合成以及人们对医疗健康方面的逐渐重视,能够适应生物复杂表面形貌、无生物毒性、可弯曲和延展的柔性传感器在可穿戴生理监测器件、电子皮肤等方面具有广泛的应用前景,而能够实现脉搏、关节屈伸测量和声音识别的多功能柔性压力传感器是研究的重点之一。本文以柔性电阻式压力传感器为研究对象,使用MXene材料碳化钛(Ti3C2Tx)为敏感材料,以印刷导电银浆的聚酰亚胺(PI)薄膜为柔性基底,
学位
历史文化街区作为城市发展所遗留的宝贵财富,记载了当地的历史变迁,反映了真实的人文生活,是城市文脉的重要物质载体。随着我国城市现代化的转型升级,历史街区因其独特的物质形态和文化内涵日益成为城市特色塑造的焦点。南市河历史文化街区是常州城区范围内3片历史街区之一,也是常州民居文化、运河文化的重要组成部分。随着相关保护规划的初步实施,街区内空间形态、建筑艺术以及文化内涵面临着许多不确定性,因此急需对街区风
学位
以新疆克孜勒苏柯尔克孜自治州的六妹羊肚菌为试验材料,采用超声波辅助碱提酸沉法提取羊肚菌蛋白质,测其抗氧化活性,以蛋白质提取率为指标,选择料液比、超声时间、超声温度和pH为影响因素进行单因素试验,采用响应面法优化提取条件,并用优化后工艺提取来自不同地区的羊肚菌蛋白质。结果显示,通过响应面法优化的羊肚菌蛋白质最佳提取条件为:料液比1︰20(g/mL)、超声时间20 min、超声温度40℃、pH 11,
期刊
随着透明围护结构在建筑中的大量应用,进入室内的太阳辐射不断增加,对人体热舒适影响显著。再者,太阳辐射存在时,着装颜色不同,会影响人体对太阳辐射的吸收,改变人体热负荷,进而影响热感觉。有学者发现,室外穿黑色服装的人体对太阳辐射的吸收率大于白色服装,身着不同颜色服装时的人体热感觉间存在较大差异。与空气调节系统营造的较为稳定的室内环境不同,室外环境中的辐射强度、空气温度及风速等多变。该差异的存在,使得太
学位
随着人们对空气质量越来越关注,气体传感器因体积小、成本低等优点在气体检测领域逐渐流行。然而,大部分气体传感器容易受环境因素的影响,其中温度、湿度带来的影响尤为显著。本课题组经过多年的研究已经熟练掌握了聚苯胺-二氧化铈(PANI-CeO2)复合薄膜氨气(NH3)传感器的响应原理与制备方法,本文对该传感器的温湿度进行了系统的研究,并设计了重叠分块多元线性回归与局部高斯过程回归两种温湿度补偿方法进行温湿
学位
浅层地热能是开发潜力巨大的可再生能源之一,其最主要的利用方式为地源热泵。岩土体类型、地下水条件及施工条件等因素极大地影响地源热泵的运行效率。为了更科学地开发浅层地热能,满足长期发展的需求,需要勘察区域浅层地热能赋存条件,包括地质地貌、水文地质条件和土壤热物理性质。这些因素决定了浅层地热能开发利用的适宜程度。浅层地热能适宜性分区评价将为地源热泵的设计、施工和城市浅层地热能利用规划等方面提供参考价值。
学位
二氧化氮(NO2)是世界上公认的六大污染物之一,它不仅会对大气环境造成污染,而且会损害人体的呼吸系统,引起呼吸系统疾病。因此,研制灵敏度高、响应快、检测极限低、选择性好的室温NO2气体传感器对于空气质量检测和健康监控具有重要的意义。考虑室温下的传感器不可避免会受到湿度影响,因此,为实现环境检测应用,气体传感器应该具有一定的抗湿性。本文采用水热法合成了金@碲(Au@Te)复合材料和碲化银(Ag2Te
学位
报纸
空气污染是当今世界全球化进程中不可回避的主要环境问题。空气污染治理已成为发展生态城市、建设生态文明的首要任务。随着“智慧城市”概念的提出,物联网技术飞速发展,然而,这样的发展也给如此庞大的无线传感器节点的供电带来了巨大的挑战。一些传感器被放置在某些极端环境和危险场所,工作人员很难定期更换电源,也不利于气体传感器朝着微型化、集成化的方向发展。摩擦纳米发电机(TENG)的发明,为解决传感器供能问题迈出
学位