论文部分内容阅读
X射线无损检测技术是目前应用范围最广的检测手段之一,与其他无损检测手段相比具有直观性和高检出率等优点,但由于射线的产生和转换呈现出极强的量子性,并且受到物质的调制能力影响导致最终成像噪声大、对比度低,造成成像效果并不理想,使之无法适应工业科技的发展对检测精度的高要求,因此本文在像增强器成像模型基础上提出相衬滤波模型,降低了检测系统对X射线量子噪声的敏感程度,改善了X射线成像质量。首先,为了突显X射线相衬滤波模型的有效性和优越性,本文利用X射线半导体成像器件搭建了检测系统,从该系统中的各个子单元着手,分析各单元对成像分辨率的影响,并结合图像傅立叶变换对图像的噪声谱进行分析,发现成像噪声具有随机性,并且遍布于整个频谱,很难用单一的模型对该系统的成像分辨能力进行精确分析,因此本文结合光学传递函数评价原理提出了一种系统级的联合评价模型,并通过实验数据仿真验证了该评价模型的有效性。接着,从物质对射线调制能力的角度出发,分析了无损检测系统中X射线与物质的相互作用以及X射线产生成像反差的几种方式。对铝、黄铜、不锈钢三种金属材料制作的光栅在不同射线剂量和厚度差异的条件下进行图像采集,并结合系统级的联合调制评价模型探索了不同材料对X射线的调制作用,表明:在相同的射线剂量下,无论哪种材料光栅,厚度差异越大成像反差越大,而在厚度差异相同的情况下,随着射线剂量变化,不同材料对射线的调制能力变化趋势相差甚远。对成像对比度、射线剂量和光栅厚度差异值进行三维曲线拟合,建立物质对X射线的调制模型和采集模型。最后,针对X射线成像中的诸多约束瓶颈以及波前调制能力较弱等问题,从弥补单光子成像缺陷和去除噪声的角度出发,提出了X射线成像系统的积分滤波模型,并对采集到的光栅图像进行处理,通过与传统的帧叠加处理方式进行对比,验证了该滤波模型的可靠性和自身优势,又从提升被测物对X射线波前调制度角度出发,在像增强器成像模型的基础上提出X射线相衬滤波模型。对薄膜基准目标源进行图像采集,在噪声环境下对其进行积分滤波处理和相衬处理,表明:压低了图像噪声的同时也强化了目标轮廓信息的,大幅的增强了X射线的成像反差。本文在成像环境较恶劣的像增强器成像模型基础上提出相衬滤波模型,并验证了该滤波模型的优越性,为高分辨率、低噪声、高对比度的实时X射线成像检测系统的实现奠定了基础。