双光子吸收碳量子点薄膜的制备及其光限幅性能的调控

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:liuandhll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超快激光技术在国防、工业、医疗等领域具有重要的应用价值,基于对人眼和光电器件的保护需要,开发光限幅材料成为目前光电产业发展的核心工作之一。双光子吸收是光限幅效应的主要机理之一,是一个瞬态响应的非线性吸收过程。碳量子点(Carbon quantum dots,CQDs)具有原料广泛、制备简单、低生物毒性以及突出的线性和非线性光学性质等优点,所以,基于双光子吸收机制的CQDs可作为一种潜在的光限幅材料。但是,关于双光子吸收CQDs的研究目前多基于其液态体系,而对于实用化的光限幅器件,需要具备良好光限幅性能的固态材料。本论文以制备对飞秒激光具有光限幅效应的双光子吸收CQDs固态薄膜为目标,首先通过微波法快速制备具备供体-π-受体结构的双光子吸收N、B共掺杂CQDs(N,B-CQDs),然后将该N,B-CQDs与不同的成膜剂进行复合得到具有光限幅功能的薄膜,最后优选一种光限幅性能良好的双光子吸收CQDs材料。通过对不同掺杂的CQDs及其薄膜的结构、线性光学和光限幅等非线性光学性能进行表征和分析,主要研究内容及其结果如下:1、以均苯三甲酸、尿素和硼酸为反应原料,使用微波法快速制备具有双光子吸收的N,B-CQDs,其直径为3.3 nm,具有高结晶度的碳核,表面含有大量羧基等含氧官能团,具有良好的水溶性。通过Z-扫描技术测试发现线性透过率为50%的N,B-CQDs溶液,在532 nm、330 fs激光照射下具有明显的来自于双光子吸收的反饱和吸收现象和自散焦效应共同导致的光限幅特性:归一化透过率降低到43%,非线性吸收系数为3.1×10-10 m/W。该工作为低成本、快速制备具有高结晶度双光子吸收CQDs提供了一种可靠的方法和思路。2、将制备的具有双光子吸收特性的N,B-CQDs与不同成膜剂(硅烷偶联剂KH792、聚乙烯醇PVA和聚乙烯吡咯烷酮PVP)复合得到三种薄膜,研究不同成膜剂对N,B-CQDs双光子吸收以及光限幅性能的影响。三种薄膜均在线性透过率达到50%以上时,具有不同的非线性光学特性:与PVA复合的薄膜具有饱和吸收的现象;与PVP复合的薄膜不再发生非线性光学现象;与KH792复合的薄膜在线性透过率为68%时光限幅的效果与N,B-CQDs溶液在线性透过率70%时光限幅的效果基本相当。总之,通过简单易行的微波法快速制备具有双光子吸收的N,B-CQDs,并且该CQDs溶液具有反饱和吸收和自散焦共同作用导致的光限幅现象。通过与三种不同成膜剂复合,得到CQDs基复合薄膜,其中与KH792进行复合制备得到的薄膜可以保持N,B-CQDs的双光子吸收和光限幅的性能,为实现低成本制备具有良好光限幅性能的固态薄膜材料提供了一种有效方法。
其他文献
多轴线运输车可以通过横向与纵向拼接的方式来满足不同质量、形状和体积货物的运输,且其具有载货平台升降功能,能够实现货物的自主装卸,在大件运输行业正发挥着越来越重要的作用。但目前多轴线运输车存在设计周期长、生产制造困难以及因自重较大而导致成本及油耗较高等问题。因此,将现代模块化设计方法和轻量化技术运用到多轴线运输车的设计研发中,缩短多轴线运输车的研发周期,降低生产成本,对提高多轴线运输车的市场竞争力,
学位
重型卡车是一类在基础经济建设中发挥运输调配功能的交通工具。以长途物流牵引重型卡车为例,由于其主要用于长途运输,驾驶员用户常年驾驶在路上,因此,高强度的工作压力下,为了保持时刻清醒,卡车行业存在一个独特的现象——跟车。行业收入不稳定、家里亲人不放心,因此“父子车”、“兄弟车”甚至“夫妻车”屡见不鲜。随着社会经济的发展,用户对于产品的需求不再仅限于“能用”,更期待“好用”。长期以来,作为整车的操作中心
学位
为了解决能源需求和环境保护的问题,清洁可再生能源的开发与利用得到了人们的关注,而高性能储能设备的开发与利用是其中的关键因素之一。在储能设备中,超级电容器以其性能优良、环保绿色、制备简便、成本低廉等优点而成为目前研究的热点之一。对于开发高性能超级电容器来说,电极材料的选择至关重要。过渡金属硫化物以其种类丰富、电化学活性高等特性,使它从众多电极材料中脱颖而出。而在过渡金属硫化物中,硫化镍由于具有较高的
学位
金刚石拥有极高的硬度和热导率、极低的摩擦系数及良好的化学稳定性等优异的物理化学性质,是一种极佳的耐磨强化材料。利用化学气相沉积(CVD)法在硬质合金(WC-Co)刀具表面沉积一定厚度的金刚石涂层,可极大地改善刀具的耐磨性能,已成为目前的研究热点。但是,在沉积金刚石涂层的过程中,基体中的Co元素作为催化相,会抑制金刚石的形核和长大,催化石墨相的生成;除此以外,硬质合金与金刚石之间热膨胀系数(CTE)
学位
柴油机因其压缩比高、热效率转化好、利用率高等优点在我国被广泛应用于众多领域,然而因此造成的噪声污染同样不容忽视。柴油机的噪声主要有空气动力学噪声、燃烧噪声和机械噪声,而由活塞敲缸导致的噪声是机械噪声中最主要的噪声源之一。随着柴油机向高速化发展,这种现象会日益加重,不仅影响发动机的性能,严重时还会出现缸套穴蚀现象,甚至穿透缸套导致发动机报废,危及司乘安全。本文开展了柴油机活塞敲缸行为的瞬态动力学建模
学位
有机-无机杂化卤化物钙钛矿材料具有优异的光电性能,如长载流子寿命、高载流子迁移率、高光吸收系数和带隙可调节等,可应用于制备多种光电器件,其中钙钛矿太阳能电池在过去十余年中发展势头迅猛。目前,钙钛矿薄膜一般采用溶液法制备,由于结晶速度快且不宜控制,所制得的多晶钙钛矿薄膜内部、晶界和表面不可避免地存在一些间隙、空位或其它缺陷。尽管钙钛矿材料对缺陷的容忍度较高,但随着钙钛矿太阳能电池光电转换效率(pho
学位
镁空气电池具有比能量密度高、使用简单安全以及成本低的特点,为解决当代环境污染和化石能源短缺问题提供了一条有效解决路径。然而,镁空气电池阳极材料仍然面临着较高的阳极极化以及较低的阳极利用率等瓶颈问题,这在一定程度上阻碍了镁空气电池的广泛应用。一般而言,合金化和塑性变形是调控镁阳极材料微观组织从而改善镁阳极的放电性能有效手段。最近的相关研究指出Mg-Bi基合金是一种非常有潜力的镁空气电池用阳极材料,但
学位
随着化石燃料的大量使用,现如今全球的能源和环境问题越发严峻,因此亟需开发新型清洁能源。氢气(H2)是一种环境友好、高比能密度、无碳的能源载体,被认为是化石能源的优良替代品。目前,氢气主要来自化石化合物,是不可再生资源。电化学水分解是获得氢气的有效且可再生的方式。在过去的几十年中,调节催化剂的化学成分和形态一直是提高碱性水电解中析氢反应(HER)活性和稳定性的主要途径。在调节缺陷工程、相变和掺杂以增
学位
本文通过喷射沉积制备了Al-12Zn-2.4Mg-1.1Cu合金,通过热挤压获得高含量的析出相(记为“AE”合金),基于均匀化处理获得高含量溶质原子(记为“AS”合金)。通过对两种合金微观组织,力学性能,加工硬化及软化行为等方面进行对比,探讨了析出相和溶质原子对高Zn铝合金力学性能,加工硬化及软化行为的影响规律。另外,对Al-12Zn-2.4Mg-1.1Cu合金的高温变形行为进行了研究,通过计算拟
学位
作为高性能轻型结构首选材料的镁合金,其硬度较低和耐磨性差等问题的存在使其应用受限。通过向镁及其合金中添加相应的增强相得到镁基复合材料,可以使其强度、硬度和耐磨性等得到不同程度的改善。选择硬度高、耐磨性好,以及与基体热膨胀系数差较小的材料作为增强相,可以使基体的性能得到更大的提升。高熵合金作为一种新型多元合金,不仅具有强度、硬度、耐磨性,而且其具有的良好界面润湿性,使复合材料及界面性能得到提高。基于
学位