论文部分内容阅读
双电层电容器(EDLCs)具有功率密度高、循环寿命长的优点,但能量密度低是其致命缺点。提升EDLCs的可耐受电压能够以平方倍速提升其能量密度。本论文以减少EDLCs电极材料——多孔炭的氧含量为出发点,致力于改善多孔炭电极材料的耐电压特性,进而提高EDLCs的能量密度。研究选择不含氧元素的低沸点小分子环状化合物为前驱体,采用“碱金属辅助促进前驱体的高温热解炭化”策略开展研究工作。
以吡咯为前驱体、分别采用金属Li、Na和K辅助,考察并明确了经由溶剂热反应和高温炭化过程制备多孔炭的可行性,制备了三种多孔炭材料。明确了碱金属促进该过程实现的机理为:Na和K与吡咯发生反应的产物具有热不稳定性,在高温下发生热解,产生具有双键的化学活泼物质C4H8、C3H6和C4H5N的双键同分异构体。这些结构有助于后续稠环结构、乃至炭材料大π键共轭结构的生成。研究了碱金属种类对多孔炭的化学组成、形貌、微域结构和孔结构的影响机制,研究发现随着碱金属活性的增强,碳质微晶结构变得更加有序;多孔炭中的sp2碳含量逐渐升高。样品的最低氧含量为6.87wt%,仍偏高,主要由五元环吡咯的反应中间体的不稳定性引起。
为了获得稳定的反应中间体(MCI),采用三种碱金属辅助炭化六种卤代芳香烃,获得了18种纳米多孔炭。研究表明,碱金属M进攻C-X键生成盐MX和苯自由基,苯自由基进一步通过自由基聚合反应演变为以六元环为基元的MCI,进而经高温热聚合后形成纳米多孔炭;而盐MX发挥“原位模板”作用,在热解成碳过程中经历相变(固→液→固或固→液→气),最终脱离而留下孔道。该制备方法具有很好的普适性。随着温度的升高,碳质微晶的结晶度先增大后减小;多孔炭的氧含量逐渐降低,1000℃时,样品的氧含量为5.96wt%。
Ar/H2混合气氛下的热解炭化使得纳米多孔炭上的部分氧元素被还原,进一步降低了多孔炭中的氧含量,成功地提升了炭电极的耐电压特性。以钾在氢氩混合气中辅助炭化氯苯制备耐高电压多孔炭(PC-KC)为例,当热解温度为1000℃时,样品PC-KC-1000的氧含量仅为4.09wt%;作为EDLCs电极材料时,在TEABF4/PC和EMIMBF4电解液中的工作电压分别提高到3.3和3.5V,最大能量密度分别为53.5和64.4Whkg-1。
以吡咯为前驱体、分别采用金属Li、Na和K辅助,考察并明确了经由溶剂热反应和高温炭化过程制备多孔炭的可行性,制备了三种多孔炭材料。明确了碱金属促进该过程实现的机理为:Na和K与吡咯发生反应的产物具有热不稳定性,在高温下发生热解,产生具有双键的化学活泼物质C4H8、C3H6和C4H5N的双键同分异构体。这些结构有助于后续稠环结构、乃至炭材料大π键共轭结构的生成。研究了碱金属种类对多孔炭的化学组成、形貌、微域结构和孔结构的影响机制,研究发现随着碱金属活性的增强,碳质微晶结构变得更加有序;多孔炭中的sp2碳含量逐渐升高。样品的最低氧含量为6.87wt%,仍偏高,主要由五元环吡咯的反应中间体的不稳定性引起。
为了获得稳定的反应中间体(MCI),采用三种碱金属辅助炭化六种卤代芳香烃,获得了18种纳米多孔炭。研究表明,碱金属M进攻C-X键生成盐MX和苯自由基,苯自由基进一步通过自由基聚合反应演变为以六元环为基元的MCI,进而经高温热聚合后形成纳米多孔炭;而盐MX发挥“原位模板”作用,在热解成碳过程中经历相变(固→液→固或固→液→气),最终脱离而留下孔道。该制备方法具有很好的普适性。随着温度的升高,碳质微晶的结晶度先增大后减小;多孔炭的氧含量逐渐降低,1000℃时,样品的氧含量为5.96wt%。
Ar/H2混合气氛下的热解炭化使得纳米多孔炭上的部分氧元素被还原,进一步降低了多孔炭中的氧含量,成功地提升了炭电极的耐电压特性。以钾在氢氩混合气中辅助炭化氯苯制备耐高电压多孔炭(PC-KC)为例,当热解温度为1000℃时,样品PC-KC-1000的氧含量仅为4.09wt%;作为EDLCs电极材料时,在TEABF4/PC和EMIMBF4电解液中的工作电压分别提高到3.3和3.5V,最大能量密度分别为53.5和64.4Whkg-1。