3微米波段激光及其复合材料内超声波激励的研究

来源 :哈尔滨工业大学 | 被引量 : 1次 | 上传用户:fengyufengsc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
先进复合材料大量应用于航空航天领域,相关零件的内部损伤情况对整个航空器的性能有极为重要的影响。激光超声无损检测技术具有高速、远距离和高分辨率的特点,适用于各种大尺寸、复杂曲面先进复合材料零件的无损检测。复合材料所含C-H和C-H2键的谐振频率位于3.4μm,使用这个波长的激光进行激发,有利于提高光声能量转换效率。因此,中红外激光是复合材料内超声场产生的首选激励源。本论文基于磷锗锌(ZnGeP2,ZGP)和硒镓钡(BaGa4Se7,BGSe)晶体,搭建了3.4μm波段中红外激励源,并在理论和实验方面对复合材料内中红外激光激励的超声场进行了研究。
  建立了复合材料中激光超声热弹性激发模型,分析了激光超声热弹性激发机制的热传导和热应力耦合的物理过程。基于双层结构模型,利用COMSOL Multiphysics多物理场耦合软件,对温度场、应力场和位移场进行了有限元求解,计算出了复合材料中温度场、应力场、位移场的分布情况。最后,通过数值模拟分析激光的波长、能量、光谱宽度以及激光脉宽对超声波激发的影响,讨论了激光超声的阈值以及等效光学穿透深度,理论上给出了激光超声对激励源的参数要求。
  设计并实现了大能量高重复频率中红外非线性频率转换的2.09μm泵浦源。建立了Ho∶YAG激光器连续和调Q运转的模型。理论计算了晶体的掺杂长度、掺杂浓度、泵浦光半径和输出镜反射率对激光输出特性的影响。理论上,对晶体内部热分布进行了分析,计算出了高功率泵浦下Ho∶YAG晶体的热透镜焦距,并据此设计出了激光器谐振腔的热稳结构。以理论分析为依据,设计了双末端泵浦Ho∶YAG声光调Q激光器。最终,实验上获得了1kHz重复频率下,最大33.5W的2.09μm激光输出,最小脉冲宽度为30ns。其光束质量因子M2=1.2。
  发展了中红外激光超声激励源。运用光学参量振荡和光学参量放大器的理论,设计了高重复频率、可调谐中红外激光。基于磷化锗锌(ZnGeP2,ZGP)晶体,实现了3.2~3.5μm激光输出,脉冲重复频率1kHz,最大单脉冲能量5.6mJ。基于硒镓钡(BaGe4Se7,BGSe)晶体,设计并实现了直腔单共振3.295μm和3.936μm激光输出,激光峰值半高小于7nm,脉冲重复频率1kHz,最大单脉冲能量1mJ。
  最后,基于纤维增强型环氧树脂基体复合材料,在3微米波段激光的激励下,实验上同时获得了中心频率为2.5MHz、5MHz、7MHz和10MHz的超声波,实验结果与理论分析符合较好。实验对比研究了1μm、2μm和3μm激光对超声激励的影响;研究分析了激励源光谱特性对超声场的影响。另外,实验研究了3微米波段激光激励下,三种典型高分子聚合物基体材料Epoxy、PEEK和PI中的超声波的产生以及材料的参数对于超声波产生的影响。
其他文献
学位
针对直接转矩控制系统存在的低速时转矩脉动问题,将电压空间矢量与直接转矩控制技术相结合,用PI调节的方法取代了传统直接转矩控制系统中采用的滞环控制,提出了一种基于SVPWM的直接转矩控制方法。在SVPWM-DTC系统中采用了神经网络速度辨识器,通过神经网络对电机的定、转子磁链和转速进行在线辨识。实现了异步电动机的无速度传感器直接转矩控制。本文主要完成的工作包括以下几个方面:首先在深入研究了异步电动机
随着现代电力电子技术的日益成熟,电力电子装置开始朝着小型化和轻量化的方向发展,这就要求电力电子装置的开关器件必须实现高频化。作为基本电力电子变换技术之一,传统的硬开关逆变技术已经非常成熟,且应用广泛,但当开关频率很高时,传统的硬开关逆变器会出现很多弊端,如开关损耗过大,谐波污染严重等,使逆变器的工作效率大大降低。软开关技术的出现使上述问题迎刃而解。本文即围绕软开关三相PWM逆变器这一主题对一种新的
CO2短路熔滴过渡焊是一种应用非常广泛的焊接工艺,但存在飞溅大和焊缝成形欠佳的缺点。大量研究表明:在送丝速度一定的情况下,恒定的过渡频率可控制熔滴尺寸及弧长处于相对合理的大小,使熔滴尺寸及弧长在扰动出现时有较大的变化裕量,利于稳定焊接过程。并且,在稳定的短路过渡情况下,短路频率越高,过渡熔滴越小,金属飞溅越小,焊缝波纹越细密,焊缝成形越佳。因此常把CO2短路熔滴过渡频率作为CO2焊接过程的目标函数
学位
DSP
功能性器件的片上集成技术是半导体行业蓬勃发展的基础,历经几十年的开拓,片上集成化成为了半导体器件研究的重中之重。在这其中光学器件是半导体的研究领域中的重要组成部分,光学器件不仅仅需要片上集成化,而且要不断朝向亚波长尺寸和材料体系多元化的方向前进。伴随着硅基材料体系通过纳米制备技术的发展不断突破摩尔定律的同时,其他材料体系的研究也为片上半导体器件提供了补充甚至创造了新的方向。仅仅近在十年前,甲氨基卤
数字病理学是医学协议中具有挑战性的进展之一。病理检查在诊断过程中起着至关重要的作用,并使病理学家能够对微观结构进行分类。病理学家在显微镜下分析了大量的活检切片。对细胞核的组织学结构,形态变化和生物组织分布的分析有助于病理学家更好地识别组织病理学样本。高含量活检组织病理学分类和分级可提供重要的预后信息,这对于了解疾病(癌症)的扩散和预报至关重要。在主要的癌症中,乳腺癌是影响世界各地女性癌症死亡的主要
学位
对称性的探索是理解自然奥秘的钥匙,对称性在自然中处处可见并且暗含着自然界各种物质和现象的特性,因此它常常被视为物理学中最基本和最重要的概念。在量子力学和经典力学中,系统的对称性允许人们对该系统的行为做出一般性陈述和预测。基于电动力学与量子力学可类比性,量子力学中的对称特性也有助于理解电磁系统中的现象。而当中心对称被打破的情况下,光与物质相互作用会发生根本性的变化并产生更丰富的物理现象。本文主要从拓
和其他类型的光学微腔相比,回音壁光学微腔具有极高的品质因子和较小的模体积,在线性光学、非线性光学以及量子光学领域都有着广泛的应用,而对光学微腔内谐振模式进行有效的调控是激光物理和光学应用中的关键。通常情况下,由于微腔尺寸比谐振波长大得多,回音壁光学微腔内可以支持大量紧密间隔的模式,模式间的竞争会损坏谐振腔出射光的质量和光谱纯度,进而引起出射光在空间乃至时间上的波动。近年来,人们对有效的模式调控进行
学位
集成电路是航空航天电子系统的核心部件,工作于空间环境下的集成电路易受到粒子轰击而引发单粒子效应,进而可能会引起系统的性能退化甚至功能失效,因此对集成电路软错误敏感性评估与缓解技术的研究对保证航天任务的顺利进行具有重要意义。随着集成电路工艺技术进入纳米时代,一些新现象、新效应的产生使得传统针对大尺寸器件与电路所开发的软错误敏感性评估方法与缓解技术难以适用。经典双指数电流源在微米级乃至深亚微米级集成电
针对诸如激光焊接、激光雷达,以及智能驾驶等领域具有强光背景噪声下微弱光信号检测的技术难点,提出了利用单模光纤中受激布里渊散射(Stimulated Brillouin scattering,SBS)光放大的方法来实现强光背景下微弱信号的探测成像。该方法将具有布里渊增益带宽窄、低泵浦功率注入条件下获得高增益,以及体积小重量轻等优点的光纤与SBS放大效应相结合,使之具有重要的研究意义。因此,本文对实现