微铣削切削力建模及表面粗糙度研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:zhouqjj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微铣削技术是基于传统切削加工发展起来的一项微加工先进制造技术,因其可以加工具有一定形状精度和表面质量要求的微小型化零件,且相对于其他微细加工方法在加工效率、加工成本上有着绝对优势,而广泛应用于精密加工。微铣削独有的尺寸效应导致宏观尺度的切削理论已不能直接应用于微铣削,因此有必要探究微纳尺度下的切削加工机理。其中,微铣削的切削力和表面粗糙度是研究加工过程以及加工质量的重要评价因素。因此,本文采用建模、仿真及试验相结合的方式,分析微铣削加工工艺过程,并深入研究切削力和表面粗糙度。论文主要研究如下:(1)刀具跳动参数识别。基于刀具空间几何状态的分析,并在已有的基于空间角度偏摆模型的基础上,提出了一种根据刀具轴线方向向量识别刀具偏心状态的方法。通过求解刀具轴线方向向量和刀具两点间的偏转角,进而根据任意轴向位置识别刀具偏心量。测量识别试验表明提出模型的预测误差为1.53%。(2)微铣削切削力和表面粗糙度建模。根据切削力的机械模型,围绕瞬时切削厚度和切削力系数,介绍了受刀具跳动、最小切削厚度、弹性恢复影响的切削力模型。根据直角转斜角切削理论,利用有限元仿真结果计算切削力系数。将提出的刀具跳动模型应用于切削力模型中刀具跳动影响因素的计算。此外,引入了微铣削动力学,考虑颤振对切削过程的影响,利用傅里叶和小波变换分析了加工过程稳定性。在表面粗糙度部分,在以往研究中加入材料弹性恢复对表面轮廓的影响,并对比不同模型预测的表面轮廓差异。(3)微铣削切削力及表面粗糙度模型的试验验证。通过锤击法测试了微铣削系统的模态响应。随后基于所建立的微铣削切削力预测模型及表面粗糙度模型,设计一系列微铣削试验,在实验室搭建的微铣床上验证模型在不同切削参数下的预测有效性,结合模态测试结果,着重分析了每齿进给量、切削深度、刀具跳动对切削力、加工稳定性和表面粗糙度的影响规律。微铣削试验结果表明,切削力模型在X方向的预测误差较好,于15%以内,在Y方向上预测误差在4.15%至25.20%之间。表面粗糙度模型除每齿进给量较小的情况,误差均在8%以内。
其他文献
本文密切结合国家自然科学基金项目,以A3并联动力头为研究对象,研究并联机构误差补偿问题,内容涉及运动学标定过程中动力头姿态误差检测、辨识工作空间测量的点位优化问题以及误差参数辨识与实验等,全文取得以下主要研究成果:在辨识模型的构建方面,首先推导了A3头运动学正逆解模型,分析了影响动力头误差的主要因素,在此基础上构建出其误差模型。在机构的工作空间范围内,实现了测量动力头姿态误差的测量方法,据此推导了
学位
数控摆台是五轴加工中心的重要部件,其综合特性直接影响工件的加工精度。目前大部分研究主要集中在机床整机或主轴等部件,而对摆台的静-动-热特性研究不多。本文以五轴加工中心数控摆台为对象,从摆台静-动-热特性建模、仿真和实验测试等方面展开研究,对摆台静刚度分布、模态、热误差规律进行了分析以及实验测量,为摆台的误差补偿和结构改进提供了基础。本文首先以某五轴加工中心摆台为例,借助有限元分析软件对摆台进行了静
学位
目前,限制颅骨组织工程支架临床实验的瓶颈是支架表面的细胞不能深入支架内部,存活率低,成骨速度慢。研究表明其原因可能是支架内部没有血管结构,导致细胞无法获取足够的营养并且将代谢排出。因此实现组织工程支架血管化是组织工程技术的一个关键内容。针对这一问题,本文提出采用DLP生物3D打印技术制备人体颅骨血管支架。对DLP生物3D打印设备、生物墨水、制备工艺及其体外实验展开研究,论文主要研究工作如下:首先,
学位
工艺感知是智能制造技术的重要组成部分,通过在线感知数控机床加工过程状态变化信息,对其实施误差补偿与控制,可有效地提高被加工零件的尺寸精度。主轴系统振动引起的动态误差是影响机床加工精度的主要因素,在机床加工过程中,主轴系统振动引起刀具成形点与工件待加工点之间产生相对误差,使得工件加工精度降低或报废。如何通过主轴系统振动误差检测,并根据误差映射模型预测加工误差,实施在线误差补偿,是当前智能制造的前沿技
学位
本文面向腹腔镜手术的操作需求,针对目前腹腔镜手术机器人缺乏有效力反馈的现状,基于光纤布拉格光栅传感机理与柔性结构的形变理论,开发了集成于腹腔镜手术机器人远端的一维、三维及夹持力传感器,用于检测手术器械末端与人体组织之间的相互作用力,具体研究内容如下:首先,提出了一种基于FBG的腹腔镜手术机器人远端一维力传感器。所提出的一维力传感器主要包括力敏柔性结构、一根嵌有FBG的光纤和接触头。其中力敏柔性结构
学位
软体机械手在易碎、不规则物品的抓取以及人机交互方面具有重要的应用前景,因此开展软体机械手设计和建模相关研究具有重要的理论和实用价值。本文研究了以气网型驱动器为基础的软体手的设计、理论建模和实验研究。主要工作如下:提出了一种具有多种抓取模式且指尖部位摩擦力可控的软体机械手。软体手指由三个气网型驱动器模块组成。与恒高度气网型驱动器相比,腔室顶部具有倒角的驱动器具有更大的反向弯曲能力。通过控制手指不同模
学位
光学玻璃以其优异的材料特性,被广泛应用与航空航天和国防信息等领域。随着现代科技的不断发展,对于光学玻璃的加工精度和效率提出了更加严苛的要求。但是由于其高脆性和低韧性的特点,导致超精密加工过程中极易发生脆性断裂现象,因此很难获得超光滑表面和无损伤亚表面。虽然目前对于光学玻璃的超精密工艺的研究已经逐步改善光学玻璃的加工精度和效率,但是由于光学玻璃的超精密去除机理的研究并不完善,导致即使加工精度和效率提
学位
面向现代制造业对高精度高承载能力齿轮传动的迫切需求,研究一种新型对数螺旋线齿廓减速器的性能分析与设计方法。与传统渐开线、摆线减速器相比,对数螺旋线齿廓近乎面接触,因而具有更高的啮合刚度与承载能力。本文在系统分析新型减速器的结构与传动原理的基础上,开展了共轭齿廓啮合特性、静力学建模及参数化设计等方面的研究,以期为指导新型减速器设计提供技术支撑。本文主要工作与研究成果如下:在共轭齿廓啮合特性研究方面:
学位
近年来,柔顺机构由于其一体化设计加工、无摩擦、可储能、传动效率高等诸多优势被广泛应用于精密工程、柔性智能结构以及人机交互等领域。随着医疗机器人的快速发展,柔顺机构在医疗手术机器人、康复机器人等方向都起到了重要作用,典型应用场景包括具有力感知的手术器械以及柔顺驱动器等。针对目前手术器械普遍缺乏力感知的问题,本文以活检钳为研究对象,提出了基于柔顺元件的力感知活检器械设计方法;同时针对现有柔顺驱动器大多
学位
碳纤维增强树脂基复合材料(CFRP)/钛合金(Ti-6Al-4V)叠层结构制孔是保证航空结构件装配强度和精度的重要工序。MQL、液氮、超声振动均可提高孔加工质量。为优化叠层制孔工艺,本文进行干切削、MQL、液氮、振动干切削、振动MQL、振动液氮、振动混合条件下的叠层螺旋铣孔实验。采用人工热电偶对CFPR层出口、钛合金层出口、叠层界面三个位置的切削温度进行测量。各冷却润滑条件均有不同程度的降温效果,
学位