考虑温度效应的燕尾榫高温微动疲劳寿命研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:bueryuyu33
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微动磨损和微动疲劳广泛存在于轨道交通、航空航天、生物医学等领域中,其造成的微动损伤俗称工业中的“癌症”。压气机作为航空发动机的重要组成部件,服役于高温、高压、高转速的恶劣环境中,其燕尾榫结构在振动和周期性疲劳应力的作用下出现裂纹萌生,产生微动损伤,进而极大降低燕尾榫结构的使用寿命。所以,探究恶劣环境下温度效应对燕尾榫结构的微动损伤机制,准确预测其高温微动疲劳寿命尤为重要。本文以实际服役工况下的航空发动机压气机燕尾榫结构为研究对象,开展高温微动疲劳试验,探究其微动损伤机制,基于损伤力学理论模型建立考虑温度效应的燕尾榫高温微动疲劳寿命预测模型,同时探究不同因素对燕尾榫结构微动疲劳寿命的影响机制,为其结构设计和优化改进提供理论借鉴与技术支持。本文的研究内容具体如下:(1)首先,以航空发动机压气机燕尾榫结构为研究对象,设计了20℃与400℃下材料为GH4169的燕尾榫微动疲劳试验。基于试验件刚度改变与裂纹扩展同时发生的假设,采用位移-应变联合监测法,提出燕尾榫高温微动疲劳试验中裂纹萌生寿命的判断标准,并在后续试验中验证并应用了该标准。结果表明:燕尾榫结构均在接触区后缘出现微动疲劳裂纹,且高温极大地降低了微动疲劳寿命;同时,也证明了提出的裂纹萌生寿命判断标准的合理性、准确性和实用性。(2)然后,基于燕尾榫的高温微动疲劳试验,探究了高温对其微动疲劳损伤的影响机制,采用M Ciavarella与D A Hills提出的带圆弧平冲头接触理论求解了燕尾榫结构的接触应力,基于普渡大学提出的微动疲劳连续损伤累积模型,提出了考虑温度效应的燕尾榫高温微动疲劳寿命预测模型并通过试验进行验证。结果表明:所提模型与试验数据之间具有良好的相关性,其相关系数r=0.99;同时,证明了该模型具有良好的预测精度,其预测误差小于19.24%。(3)最后,选取燕尾榫结构微动应力、Ruiz参数及摩擦功等评价指标,借助ABAQUS软件平台对不同实际服役工况下的燕尾榫结构进行仿真计算。进而分析摩擦系数、载荷、温度、圆弧尺寸等因素对以上评价指标的作用机制,从而探明多因素耦合条件下燕尾榫结构的高温微动疲劳寿命的内在规律。研究结果表明:不同因素对燕尾榫结构的微动损伤影响机制不同,载荷与高温影响最为显著,摩擦系数次之,圆弧半径影响最弱。
其他文献
花键副由于具有高扭矩的传递能力和不对中的补偿能力,为航空发动机的可靠、耐用和精准传动提供技术支撑。在起飞、巡航和着陆的过程中,花键副长期处于高循环载荷下,名义上处于静止状态但具有微小振幅的花键联轴器,通过扭矩夹紧在一起的两个表面之间会发生损坏,为涡轮传动系统的长期运行带来了严重威胁。为设计高性能航空发动机花键联轴器,准确预测微动磨损是一项关键技术。目前,航空花键在磨损方面的基础理论与预测方法不够完
探索轻质、低成本、高性能的新型夹芯结构,实现结构轻量化,是航空、航天事业亟待解决的问题之一。折叠结构作为一种新型的夹芯结构,具有比强度高、比模量高的优点,且结构表面曲率不连续,雷达散射截面积较小,因此该夹芯结构有望被应用于雷达、天线罩等领域中。在本研究中,基于折纸思想,提出并制备了U型折叠夹芯结构,分析了该结构的力学性能和电磁特性,并与传统V型折叠夹芯结构进行了对比研究,主要研究内容如下:(1)为
铝合金在国内民生工业领域扮演着重要角色,因为其优秀的物理和化学性能被广泛应用于航空制造业,在飞机结构上铝合金常用于制造框、舱门骨架、龙骨梁、腹板、蒙皮等。飞机装配时,需要在铝合金结构件上制出大量的孔用于铆钉联接或者螺栓联接。在航空制造业的制孔领域发展了一种比较新的工艺——螺旋铣孔,其在加工质量、加工效率、适用场景等方面展现出了一定的优势,受到了广泛的关注。本文针对铝合金2024材料开展了螺旋铣孔构
基于智能结构的变体飞机是未来飞行器发展的重要方向之一,多稳态变体结构具有保持多种稳定状态的能力,使其能够根据实际任务需求产生自适应变形,并且不需要额外的能量输入就可以维持在稳定状态下,是一种保证未来变体飞行器具有轻量化和低能耗特性的理想智能结构。但是国内外的研究现状反映出目前的多稳态变体结构仍存在承载强度低、稳定性差等方面的问题。基于此,本文提出了一种基于薄壁圆柱壳内压膨胀效应的新型多稳态变体结构
世界各国越来越重视航空发动机技术的发展,并将航空发动机的研究水平作为衡量一个国家工业水平的高低。航空发动机的制造非常复杂,国内外优质的、完整的发动机制造技术仅掌握在少数发达国家手中。对于航空发动机来说,叶片加工占整个航空发动机制造工艺流程的30%以上工作量。目前,国内外常采用电化学的加工方式对其进行加工,但电化学加工后的叶片进排气边缘型面精度不高,残余大量不规则形状余量。为解决电化学加工叶片工艺流
航空发动机转子主要采用多级盘、盘鼓连接的形式,具有尺寸大、级数多等特点。装配是航空发动机制造过程中的重要一环,是影响整机性能的关键环节,若装配不平衡量不能满足实际需求,在工作过程中会引起较大的机械振动,严重影响航空发动机的工作性能,直接影响航空发动机的使用寿命。因此,研究装配过程中转子不平衡量的变换机理,在转子装配的过程中针对不平衡量超差等问题做出合理的调整对于保障装配质量、控制整机振动十分重要。
航空发动机转子作为发动机的关键部件之一,其装配后的精度程度对于实际工作状态有着重要的影响。在装配过程中,由于零件的制造误差的不确定性以及受力后零件发生变形,转子的装配精度很难得到保证,另外还会出现“曲轴型”、“弯弓型”转子装配的现象,导致航空发动机转子装配的一次性成功率低,需要通过人工试错法、修配法多次装配。本文提出了一种基于机器学习的航发转子装配精度预测与优化技术,融合人工智能算法和优化算法,实
运载火箭作为空天运输的主要载体,是我国在航空航天领域发展的主要方向之一。目前,运载火箭主要采用捆绑式结构,即助推火箭捆绑在火箭芯级,以提供用于提升动力和控制姿态的推力,推力的剧烈变化会对芯级产生较大冲击,而芯级属于硬壳结构,所以当助推火箭的推力有偏差时,将会影响火箭姿态控制,过大的推力偏差甚至会造成芯级的局部屈曲,最终造成破坏。因此,掌握芯级结构的载荷对提升火箭发射成功率、提高运载能力性价比和火箭
碳纤维增强热塑性复合材料(CFRTP)因具有轻质、高强、耐冲击等优良力学性能,已成为高端装备减重增效的优选材料。为满足高端装备构件承受巨大、复杂、多变载荷的要求,其在连接部位仍需与铝合金(Al)等金属材料共同使用。实现CFRTP/Al的可靠连接是保证此类结构服役性能的关键,激光连接技术利用CFRTP所具备的可焊接性,可实现CFRTP/Al快速、非破坏连接,是适用于此类叠层结构可靠连接的新发展方向。
在电火花加工过程中,工具电极与工件之间等离子体通道的高温会对工件表面材料进行熔化去除和部分汽化去除。在电火花加工过程中高温的作用下,工件表面会形成由两层不同性质金属组成的变质层,处于外层的变质层金属被称为熔化凝固层(也被称为重铸层),熔化凝固层是加工过程中被高温熔化的材料重新凝固在工件表面的一层较为疏松的材料。处于里层的变质层金属被称为热影响层,热影响层是工件表面没有熔化或汽化但在高温影响下发生了