论文部分内容阅读
长江流域是我国第一大流域,覆盖全国19%的国土面积,容纳全国33%的人口总数,储备全国36%的水资源量,贡献全国40%的GDP。然而近年来,在全球极端气候加剧的背景下,长江流域水资源脆弱性增强,水文极端事件频发。水资源的极端波动影响长江流域的生态平衡、经济发展、社会安定、甚至国家兴衰。论文以长江流域为研究对象,评估流域历史及未来的气候变化,建立全流域的气象-水文耦合模拟预测系统,在此基础上预估长江流域至本世纪末干旱和洪涝的时空演变趋势。论文的主要工作与研究结论概括为以下几个方面:(1)论文检测了长江流域上世纪中叶至本世纪初的气候及水文变化趋势。1956~2013年148个气象观测站气温及降水检测结果表明:长江流域整体的气温呈现上升趋势,降水呈现降低趋势。其中日最低气温的升高幅度高于日最高气温,分别每年升高0.021°C和0.013°C,降水总量以每年0.36 mm的趋势递减。1956~2013年18个水文站月观测径流趋势检测结果表明:仅有高场站、武胜站及城陵矶站的河道径流分别以每年-5.969 m~3/s、-5.005 m~3/s和-45.267 m~3/s的趋势减少,其余15个水文站点的观测径流均无显著变化趋势。1990~2010年18个水文站日观测径流趋势检测结果表明:长江中上游水文站攀枝花、华弹、屏山、武胜、北碚、寸滩、黄陵庙及沙市监测径流呈现升高的趋势;朱沱及武隆水文站径流没有呈现明显变化趋势;石鼓、高场、万县、宜昌、城陵矶、螺山、汉口及大通水文站径流呈现降低趋势。1990~2010年18个水文站径流突变点检测结果表明:除华弹站及城陵矶站以外,长江流域各站点均未发生明显的模式改变,表明人类活动对长江流域整体的径流影响不表现为显著的模式突变式的改变,该结果为水文模型模拟的可行性奠定基础。该部分结果为深入理解及合理解析长江流域未来趋势变化提供知识储备及背景支撑。(2)论文评估了CMIP5对长江流域历史阶段降水及气温的模拟能力,并提出了新的降尺度算法。CMIP5模型的RCP 4.5及RCP 8.5模拟数据与观测数据比较结果表明:CMIP5模型对长江流域历史气候的模拟能力欠佳,模拟偏差均较大,总体来说,所选的CMIP5模型模拟降水普遍高于观测降水,而模拟气温普遍低于观测气温。对论文提出的降尺度方法有效性评估结果表明:该降尺度算法能较好地满足极端气候事件的研究需求,其对均值、标准差和偏差范围的改善效果,对降水季节性统计特征的修正效果,对趋势的保留和对极值的处理效果均较好。基于降尺度后的CMIP5数据,预测长江流域2006~2100年气候变化结果表明:流域未来的预测降水、最高及最低气温的平均值均有望增加,且RCP 8.5情景的升高幅度高于RCP 4.5情景。降尺度后各个站点的变化率在空间上具有连续性及一致性,空间变化梯度并不明显。2006~2100这95年间长江流域总体来说,RCP 4.5和RCP 8.5情景下的日降水量分别预计增加0.35 mm和0.17 mm,最高气温预计升高2.89°C和5.70°C,最低气温预计升高2.54°C和5.20°C。(3)论文建立了长江流域的Soil and Water Assessment Tool(SWAT)水文模型,模拟流域历史水循环特征及预测流域未来的水资源时空动态变化。SWAT模型率定及验证的结果表明:基于18个水文站点1990~2010年日径流观测数据,计算率定期及验证期的决定系数R~2平均值(方差)分别为0.76(0.023)和0.67(0.031),纳什系数NS的平均值(方差)分别为0.67(0.031)和0.68(0.017),表明论文构建的SWAT模型可以较好地模拟研究区的水循环特征,满足本论文进一步研究的需求。模拟及预测长江流域1960~2100年产水量、土壤含水量及大通水文站河道径流量结果表明:1960~2005年历史观测气象资料与同时期的CMIP5气候模式模拟结果比较吻合。而经预测,2006~2100年间,流域产水量、土壤含水量及大通水文站河道径流量均会有所升高。流域水文建模为认识流域未来长期气候变化下水资源的响应提供可靠的技术手段。(4)论文预测和评估了长江流域21世纪后80年的气象干旱、水文干旱与农业干旱状况。干旱强度、严重度、频率和持续时间的评估结果表明:长江流域未来的干旱强度较历史阶段会发生很大的转变,表现为低强度的干旱事件有望减少,极端和异常极端强度的干旱事件有望增加。未来时段,气象干旱和水文干旱的严重度稍有降低的趋势,而农业干旱严重度呈现升高的趋势,RCP 8.5情景下的升高幅度较RCP 4.5情景下更明显。在长江源头区域及围绕四川、贵州和重庆的交汇区域农业干旱升高的趋势尤为显著。21世纪后80年中,干旱频率和持续时间并无显著趋势变化,但干旱持续时间较历史阶段有所延长。降水量、产水量和土壤含水量的干旱检测性能评估结果表明:在检测干旱时,降水量较产水量和土壤含水量对轻度干旱的识别更灵敏,而且可以更早的检测到干旱的发生,而产水量和土壤含水量对干旱持续性的检测更可靠。此外,土壤含水量综合考虑了蒸散发过程,所以对全球气温变暖的表征更有效。这些认识有助于我们了解不同干旱描述符之间的相互关系,对干旱减缓措施的制定与实施具有实际的指导意义。利用CMIP5模型预测干旱效果表明:干旱的预测结果因模型而异,所以基于单个模型的预测结果不能揭示未来气候变化的不确定性,多模型集成的方式提供了未来发展方向的不同可能,预测结果更可靠。尽管科学界在预测未来的气候变化方面已经取得了丰硕的成果,但离精准预测依然还有很长的路要走。(5)对长江流域125条主要河道的径流量进行非稳态洪涝频率分析,包括洪峰峰值、洪峰频率及洪峰回归周期对应的回归水平的变化趋势,结果表明:RCP 4.5及RCP 8.5情景下长江流域绝大多数河道的洪峰峰值和洪峰频率均呈现为明显升高趋势或无明显的变化趋势,即未来长江流域的洪峰峰值和洪峰频率不会低于历史水平,绝大多数河道都会呈现升高的趋势。升高的洪峰峰值会对现有水利工程的承载力和安全性带来挑战;频发的洪涝灾害会威胁人民的生活和安全,社会生产和安定。对流域20、50和100年回归周期的回归水平分析可知,长江流域上游源头区域回归水平较低,而中部及东部区域回归水平较高,主河道的回归水平最高。该结果可为长江流域科学、务实、高效的抗洪减灾工作提供理论支撑与决策支持。