基于近红外DFB激光器的CH4吸收光谱研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:comeandsit
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球经济迅速增长,甲烷(CH4)作为天然气的主要成分,已经成为生产生活中重要的燃料之一。但因其易燃易爆的特性,严重威胁生产和人身财产安全。此外,甲烷作为重要的温室气体,对加速气候变暖起着不可忽视的作用。因此,开展甲烷气体的高灵敏度检测方法和仪器研制具有重要的实际意义。当前,激光吸收光谱因其具有非接触性、快速响应和高灵敏度等优势,在气体检测领域得到广泛应用。直接吸收光谱技术作为广泛使用的光谱方法,在已知分子的谱线强度、温度、压力等参数下,结合朗伯比尔定律即可反演出待测气体浓度信息。然而,吸收光谱所普遍依赖的HITRAN数据库中的光谱参数有限,无法满足实际应用中复杂环境中高精确度浓度测量的需求。本文选用工作在近红外波段的半导体激光器作为光源,结合自行编写的多光谱拟合程序算法,对甲烷在1.653μm(波数为6046.9 cm-1)处泛频2v3吸收带中R3跃迁谱线参数进行了深入研究,实验结果与最新版光谱数据库HITRAN16进行了对比,线强、空气加宽和自加宽系数均具有较好的一致性。据此,针对水汽加宽效应的显著影响,和现有光谱数据库中的加宽参数均为干燥空气诱导的加宽系数无法满足实际应用需求,通过自行建立的实验装置开展了水汽诱导的甲烷R3跃迁谱线加宽系数研究,并与其他文献报道的相关结果进行了对比,在实验误差范围内,结果具有较好的可靠性,从而为高湿环境中高精确反演甲烷气体浓度算法模型的修正提供重要光谱参数。此外,本文采用三镜腔结构,搭建了一套基于近红外1.653μm半导体激光器的开放式痕量甲烷气体检测系统。利用波长调制光谱技术和相关光谱原理的校正算法,在有效光程约36 m的实验条件下,实现了大气甲烷的实时测量。根据艾伦方差(Allan deviation)分析,在2 s的积分时间内系统探测灵敏度为206.2 ppb,当积分时间增加至798s时,该系统的灵敏度提高到8.1 ppb。该实验系统可广泛应用于工业气体处理控制、大气环境监测等领域。
其他文献
随着信息化时代的到来,全球学术研究活动快速发展,学术文献的发表数量日益增长。为了解决海量学术文献难以管理这一难题,以互联网技术为核心的大规模文献数据库、学术检索平台等应运而生,极大地改变了科研学者对文献数据的检索方式。然而,来源于不同文献检索系统的作者存在同名现象,使得许多同名作者的学术文献无法进行正确的归属,降低了学术检索的准确性。目前大量学者提出了基于机器学习或基于图的作者同名消歧算法,但存在
中文篇章级金融事件抽取是事件抽取领域的一个重要研究方向,旨在从篇章级金融文本中抽取出对应的金融事件信息。现有的中文篇章级金融事件抽取研究热点是如何在篇章级别文本下进行跨句事件抽取。其主要研究如何构建端到端的模型进行事件抽取,大部分研究都是在模型层次上。然而这些工作忽略了词表、特定领域和标签层次等外部知识。这些外部知识对中文篇章级金融事件抽取的性能提升有很大帮助。为了解决上述问题,本文提出了以下两个
车载网络中的信息交互给用户带来了诸多便利。随着5G时代的到来,网络服务的传输速度有了明显的提高,车辆在车载网络中交换的内容不再局限于交通信息。高速行驶状态下的车辆可以共享各种内容。然而,由于车辆的快速移动特性,安全、高效地共享内容仍然具有挑战性。条件隐私保护和消息认证一直是车载网络安全研究的主要课题,在新的技术背景下,车载网络面临的主要问题依旧是满足用户对于安全性的需求。在许多现有的认证方案中,车
DRAM由于单元尺寸小、容量大、耐久度高等优点,被广泛应用于移动设备、服务器、PC等领域。其市场规模超过600亿美金,占全球集成电路市场十分之一以上。在工艺不断进步的过程中,DRAM电容大小不断降低,为SA识别位线间的电压差带来巨大挑战。受随机掺杂波动的影响,SA的失调电压逐渐增大,因此对DRAM低失调灵敏放大器的研究非常有意义。本文首先对DRAM结构和原理进行介绍,然后分析了SA失调电压产生原因
最近十几年,互联网发展的速度超乎想象,以前都是通过信件或者面对面交流,而现在,基本被互联网取代。由于互联网已经成为日常生活中的一部分,所以网络信息安全就被广大网络用户密切关注。信息是否安全,这完全由密码的可靠性决定,密码的保密性的高低又是由密钥复杂程度决定,随机数的随机性越好,生成的密钥越复杂,反之生成的密钥就比较简单,容易被破解,所以随机数发生器的研究就极其重要。本文介绍了直接频率平均(Dire
存储器,是一种有效存储数据的芯片,它是集成电路产业的关键部分,更是电子设备上必不可少的组成部分。随着便携式电子设备的兴起,例如手机、平板电脑、无线蓝牙耳机等,电子设备上日益增加的功能与迟滞不前的电池技术产生了矛盾,所以在电路设计层面,低功耗技术变得越来越重要,用非易失性存储器替代易失性存储器是一个很好的解决方案,但是现存的主流非易失性存储器如FLASH,读写速度慢,写入功耗大,无法替代SRAM、D
作为计算机视觉任务中的一个重要分支,图像显著目标检测旨在研究让计算机模拟人类的视觉注意力机制提取图像中最感兴趣的目标或区域。近年来,随着卷积神经网络在不同计算机视觉任务中的广泛使用,基于卷积神经网络的显著目标检测吸引着越来越多人的关注。基于传统机器学习方法的可见光显著目标检测在遇到场景复杂、目标与背景相似等挑战时,目标边界模糊现象较为严重。而热红外成像仪可以根据物体表面的热辐射成像,不会受到雨雪、
信息通信技术的蓬勃发展使整个社会进入了智能时代,智能设备与社会紧密的联系在了一起。智能设备的普及以及优化在给人们带来更加优秀的用户体验的同时也对智能设备中的硬件要求变得越来越高。存储器作为智能设备中极其重要的组成部分,对于其性能的要求也就变得越来越高。动态随机存取存储器(Dynamic Random Access Memory,DRAM)作为应用最为广泛的一类存储器,其在整个存储器市场的占有份额一
如今,智能技术已成为人类生活中不可或缺的一部分,创新技术工作者一直在寻找能够满足这部分需求的智能高效材料。其中,光电探测器和超级电容器就是其中的两种技术。光电探测器是可以将光信号转换为电信号或其他信号的设备,目前已在生物和化学传感,医学成像,安全通信和天文研究等领域都有重要的使用。自从发现极高电离的紫外线(UV)辐射会触发许多化学过程以来,研究人员就非常清楚它们对人体健康和环境的有害影响。因此需要
电磁带隙(Electromagnetic Band-gap,EBG)结构因其独特的电磁特性,受到了众多学者的广泛关注,结合EBG结构来进行天线设计成为了新一轮的研究热点。本文在先前EBG天线设计的基础上,重点研究了小型化和多频段EBG结构在天线设计中的应用,分别设计了多款小型化和多频带的EBG结构,并把它们应用在多频带、超宽带和MIMO天线的设计中。其中在双频天线的设计中,创新性的提出了新型嵌套型