光子轨道角动量态检测方法研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:qwert730202
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,由于光子轨道角动量(Orbital Angular Momentum,OAM)具备正交性和高维性,基于OAM态的高维量子通信及基于OAM态的复用光通信(不需要额外的带宽)都引起了广泛的关注,其中精确的OAM态检测仍然是一个重要挑战。本文针对于光子轨道角动量的拓扑荷检测、轨道角动量光束的强度和相位捕获进行了研究,主要工作和成果如下:(1)考虑到OAM光束具有螺旋相位结构及其Gouy相位特点,论文提出了一种基于干涉OAM态花瓣图案数量和花瓣图案旋转角度的OAM态拓扑荷数的检测方法。利用干涉OAM态的花瓣图案数量与输入OAM态拓扑荷间关系,以及花瓣图案在不同传播距离下的旋转角度不同,通过测量花瓣图案的旋转角度,可以有效地计算出输入OAM态的拓扑荷数值。论文首先推导出干涉OAM态花瓣图案的旋转角、拓扑荷值与传播距离之间的关系,然后给出通过干涉OAM态的花瓣图案数和花瓣图案的旋转角度获取输入OAM态的拓扑荷数值的方法,数值模拟和实验结果表明,该方法可以同时检测出输入OAM态的符号和拓扑荷,且具有较高的容错性。(2)考虑到本地平面波与接收OAM态间的干涉相长与相消,论文提出一种同时捕获接收OAM光束幅度分布和相位分布的方法。将接收OAM态与接收端的本地平面波产生干涉,用两个电荷耦合器件(CCD)分别记录下相长和相消的干涉图案。通过本地平面波的不同相位设置,如?/2和?,可以从两次干涉、四个干涉图案中同时捕获接收OAM态的幅度分布和相位分布。论文首先从理论上分析从相长和相消干涉图案中同时捕获接收OAM态的幅度分布和相位分布,并通过仿真和实验验证了该方法的可行性。结果表明,该方法可以同时捕获单个OAM态和叠加OAM态的幅度分布和相位分布,且即使在大气湍流的环境中,该方法也可以同时捕获接收OAM态的幅度和相位分布,具有较强的鲁棒性。
其他文献
世界卫生组织统计并公布的数据显示每年新增约一千万神经系统疾病患者。贫困、营养和医疗资源的缺乏,导致部分发展中国家神经系统疾病正面临严峻的形势。目前常见的神经系统疾病主要有癫痫、阿尔兹海默症、中风、偏头痛、耳鸣、抑郁症和药物成瘾等。经颅电刺激已被证明是一种针对神经系统疾病非侵入式、安全的治疗手段,可以持续作用于一部分患者,改善各类神经系统疾病。部分研究者也进行了经颅电刺激对人类认知系统影响的研究。多
学位
2004年,科研人员成功制备出石墨烯,这激发了研究者对二维材料的研究热情。研究人员不断寻找结构独特且具有优异性质的新颖二维材料。其中,单层磷化硼(BP)是一种性能很好的二维材料,具有类石墨烯结构和较高的稳定性。BP的带隙值随着层数的增加而减小,其能带可以通过堆叠和施加外电场进行调控,单层BP是一种带隙值约为1 e V的半导体材料且具有直接带隙的性质。此外,它还具有极高的载流子迁移率。由于单层BP的
学位
电力系统的安全稳定运行是社会有秩序发展的心脏和动力,促使我国经济稳步快速发展,为人类社会的发展起到了巨大的促进作用。因此,对电力系统领域的研究对社会和国家来说都有重要的价值和意义。本文主要对智能优化算法中粒子群优化算法进行研究,针对其易过早陷入局部最优值和对于某些多维问题难以搜索到最优解的缺陷进行改进,并应用于电力系统经济调度问题。首先,本文对基本粒子群优化算法做了深入的研究,从算法原理、认知分析
学位
随着信息时代的发展,高质量的图像在摄影、航天、生物医学、通信以及资源勘探等方面具有重要应用。然而图像在采集传输过程中易受到设备以及外部环境的干扰,最终得到的往往是降质图像(通常含有噪声、模糊、下采样等),极大地影响了后续分析与应用。作为一类特殊的含乘性噪声的降质图像,由于乘性噪声的高度图像依赖性,使得图像乘性噪声去除变得相当困难和极具挑战性,因此研究更加有效的图像乘性噪声去除方法变得尤为重要。由于
学位
手势识别作为一种自然直观的人机交互方式,用户可以通过手部运动来实现对电子设备的控制。毫米波作为5G无线通信关键技术,可大幅度提高无线网络速率。除了超高速无线传输,毫米波的短波长、大带宽、有向波束等特点,也使得高分辨率、高健壮性的人员手势识别成为可能。为了取得更智能、便捷的人机交互体验,本文基于调频连续波毫米波雷达平台进行了手势分类和识别的研究,具体工作如下:(1)针对微小手指动作、易混淆手势的分类
学位
透明非晶铟镓锌氧(a-IGZO)基薄膜晶体管(TFT)以其具有驱动能力强、光学透过率高、大面积制备均一性好、功耗低等优点,作为核心器件应用于新一代显示驱动技术中。尽管a-IGZO TFT表现出优异的器件性能,但由于a-IGZO沟道材料的晶格结构无序性,在材料中存在高密度的亚带态缺陷,严重影响a-IGZO TFT的器件性能与可靠性。近年来,原位氮掺杂技术被提出抑制a-IGZO TFT器件中亚带态相关
学位
随着智能设备大规模的接入电网,各项网络通信技术与电力的融合也愈加紧密,这将非常有利于智能电网的发展。但机遇与危险并存,信息技术与智能设备的高度融合使得电力侧也将面临更多来自网络的攻击和威胁。其中,由电动汽车和充电桩组合而成的电动汽车充电系统具有负荷量大、网络通信发达等特点,一旦攻击者以此为突破点,实施针对电力系统的网络攻击,导致信息泄露或决策失误,将对经济和社会稳定造成无法预测的损失和不利影响。因
学位
在高比例可再生能源接入电网背景下,发电侧与需求侧的功率不确定性加剧,电力系统调度的灵活性需求激增,系统的安全可靠运行面临巨大的挑战,单独利用发电侧应对负荷变化的方式已难以支撑电网的调节需求。本文利用负荷的可调容量提高电网运行的灵活性,分别从需求响应(Demand Response,DR)与备用角度分析了负荷的可调价值,以此促进新能源消纳;进一步,通过负荷集群的有效聚合以降低系统的整体调控成本,提高
学位
密码学是一门研究如何保密地传递信息的学科。密码学在诞生之初是为了保护军事通信,经过长期的发展,密码学在金融、商业和个人隐私上都起着非常重要的作用。传统密码体制的安全性是基于计算复杂度而设计的,数字签名传统密码体制之一,由于其准确性和安全性,它被广泛应用于金融、邮件等各种通信任务中,但是在算法不断突破以及量子计算机蓬勃发展的当下,这类体制变得不再安全,量子密码学的出现给了人们希望。与传统密码学相比,
学位
图像语义分割(Image Semantic Segmentation)一直是计算机视觉中一项基本且具有挑战性的任务,它在许多实际应用中发挥着重要作用,例如机器人技术和医学分割等。近年来,卷积神经网络(Convolutional Neural Networks,CNNs)在语义分割领域中的应用取得了显著进展。例如,基于全卷积神经网络架构(Fully Convolutional Network,FCN
学位