无机纳米材料的制备及其在生物分析中的应用

来源 :东北大学 | 被引量 : 1次 | 上传用户:songyonghuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无机纳米材料因其维度的逐渐降低,在光、电、磁、声等方面表现出不同于常规材料的优良的物理和化学性质。无机纳米材料与生物和化学分析技术的深入结合已成为国内外生物医学分析和环境分析领域的前沿和热点问题。然而,目前大部分基于纳米材料的传感器由于受到高消耗、抗干扰能力差以及不稳定等分析性能的限制,仍然处于实验室研究阶段。同时以纳米材料负载的药物的可控性释放亟待研究。基于上述背景,本论文旨在将纳米材料引入到化学/生物传感器以及药物负载和可控性药物释放之中:(1)结合无机纳米材料优良的光学性能,有目的性的设计纳米探针,构建具有较好抗干扰能力、稳定性好以及灵敏度高的分析方法,应用于生物和环境样品的分析;(2)设计合成多功能的纳米复合材料,以实现药物的负载和可控性释放,提高杀菌治疗效率,减少或避免广谱抗菌药物的使用以及物理杀菌带来的组织损伤或水体中营养物质损失。论文的第一章简要介绍了无机纳米材料的种类、物理化学性质和应用。详细介绍了半导体纳米晶和金纳米棒两种无机纳米材料的组成、分类、光学性质以及在生物和环境分析中的应用。论文的第二章合成了以N-乙酰-L-半胱氨酸为稳定剂的量子点(NAC-QDs)和对汞有特异性响应的罗丹明6G衍生物(R6G-D),并对它们进行了红外光谱、核磁共振氢谱表征。基于NAC-QDs和R6G-D对汞离子的荧光响应及它们吸收/发射光谱的重叠,建立了NAC-QDs/R6G-D荧光共振能量转移体系,用于汞的比率荧光检测,并对标准样品和环境水样中的汞离子进行了定量检测。检测汞的线性范围为5-250 μgmL-1,精密度为3.2%(175μg L-1,n=11),检出限为0.75μg L-1(3σ/s,n=11)。该FRET传感体系能够在0-250 μg mL-1浓度范围内随着汞离子的浓度呈现色差变化,可以对汞离子进行半定量可视化检测,辨别性能可达50μg L-1。本文所建立的比率荧光FRET检测平台能够通过双波长荧光强度比成功的避免检测器带来的干扰,具有较高的灵敏度、良好的选择性、且检测过程简单、检测结果准确。本方法能够在降低成本的情况下实现环境及生物样品中待测物的准确定量检测和可视化半定量检测。论文的第三章合成了金纳米棒包覆/卡那霉素负载的中空二氧化硅纳米囊(HSKAurod)。纳米复合材料HSKAurod纳米囊同时具备了金纳米棒的物理光热杀菌性能和杀菌药物卡那霉素的化学杀菌性能,能够在光热治疗的同时实现药物的负载与可控性释放。以中空二氧化硅纳米囊作为药物载体负载广谱抗菌药卡那霉素,将金纳米棒作为近红外光热响应材料包覆于纳米囊表面,避免负载的卡那霉素的泄漏。选取大肠杆菌E. coli BL21为目标菌株,研究了HSKAurod纳米复合材料的杀菌性能和杀菌机理。HSKAurod纳米囊具有很高的光热转换效率,10mgmL-1的材料能在近红外光(785 nm)照射20 min内使环境温度由室温的21℃迅速升至50℃。HSKAurod纳米囊的杀菌性能显著提高,10 mg mL-1的HSKAurod纳米囊在近红外光照射处理20 min后,细菌杀死率几乎达到100%。这表明物理杀菌与化学杀菌的结合可以产生杀菌的协同作用,有效降低了抗菌药物的用量,缩短了光热治疗的时间,降低了物理杀菌带来的生物组织损伤。HSKAurod纳米囊有潜力代替传统的杀菌剂,应用于临床杀菌的辅助治疗。论文的第四章设计并合成了双金属核-壳-壳金-银-金纳米棒(Au-Ag-Au nanorods)作为近红外光区内的光热杀菌材料。Au-Ag-Au nanorods外层金壳能够在近红外光照射下消融而使中间的银壳层暴露出来,实现抗菌的银壳层/Ag+的可控性释放。这种将外层金壳的光热杀菌与中间银壳层/Ag+的可控性释放相结合,赋予了Au-Ag-Au nanorods卓越的杀菌性能。以大肠杆菌E. coli 0157:H7为细菌模板,研究了双金属核-壳-壳纳米棒的杀菌性能和杀菌机理。在低功率的近红外激光照射下,外壳金层使pAu-Ag-Au nanorods(44℃)展现了优于金-银纳米棒(Au-Ag nanorods,39℃)的光热转换性能。与此同时双金属纳米棒的核-壳-壳结构使其具有比Au-Ag nanorods更好的化学稳定性,16天内Au-Ag-Au nanorods的吸收光谱稳定,吸光度无变化。10μgmL-1的Au-Ag-Au nanorods在近红外光照射10 min就能使周围溶液的温度达到44℃,在近红外光照射20 min时对大肠杆菌E. coli 0157:H7的杀死率达到100%。双金属核-壳-壳Au-Ag-Au nanorods用于杀菌,成功避免了广谱抗菌药物的使用,减少了材料的用量,提高了杀菌效率,同时低功率近红外光的使用降低了对生物组织带来的损伤。上述特性使双金属核-壳-壳Au-Ag-Au nanorods有望成为一种新型的纳米光热转换材料用于体内的生物医学研究。论文的第五章首先通过一步法合成了带正电的磁性rGO-Fe3O4-PEI纳米材料,并在还原氧化石墨烯片层上负载大量的双金属核-壳-壳Au-Ag-Au nanorods,得到的rGO-Fe3O4-Au-Ag-Au纳米复合材料作为近红外光热材料,用于细菌的捕获、分离和杀死。以大肠杆菌E. coli O157:H7为目标菌株,分别研究了纳米复合材料对细菌的捕获能力、磁分离能力、光热转换效率以及杀菌性能。rGO-Fe3O4磁性材料的组装,使得rGO-Fe3O4-Au-Ag-Au纳米复合材料在近红外光热杀菌的同时,还能对细菌进行识别捕获并从水体样品中磁分离出来O30 μgmL-1的rGO-Fe3O4-Au-Ag-Au在磁场作用下10 mmin内就能100%识别捕获浓度为1 × 108 cfu mL-1的E. coli O157:H7并将其从溶液中磁分离除去。rGO-Fe3O4自身具有一定的光热转换性能,加上石墨烯材料超好的导热性能,组装后有效提高了纳米复合材料的光热转换效率,25 μg mL-1的rGO-Fe3O4-Au-Ag-Au在近红外光照射10 min可使周围溶液的温度升高22℃。Au-Ag-Au nanorods经过磁性材料rGO-Fe3O4组装后,杀菌效果增强,30 μg mL-1的rGO-Fe3O4-Au-Ag-Au纳米复合材料在经磁分离后,近红外光照射20 min达到100%的杀菌效果。纳米复合材料rGO-Fe3O4-Au-Ag-Au能够有效的将磁分离与光热杀菌相结合,在提高杀菌效率、减少贵金属纳米棒用量的同时,还能将细菌从水体样本中分离去除。整个细菌捕获分离和灭活过程操作简单可行。
其他文献
<正> 盘锦市新生农场,地处辽河冲击平原南部,为河淤退海之地,土质为盐渍型水稻土,PH 值在8.5左右,含盐量0.2—0.3%,有机质含量1.5—2.5%,年积温3428度,无霜期为167天.种植水
醇类化合物的氧化反应是众多有机合成过程中的关键步骤之一。金纳米粒子作为醇氧化反应的催化剂,具有制备过程简单、功能化方法多样、物理/化学稳定性高以及对伯醇底物的高选
本文作者长期来从事氟化工业的研究,84年曾参加了国家科委新型材料组,有机氟分组的调查,对浙江,江西,湖南三省市的萤石资源和氟化工业进行了实地考查。在此基础上,提出了发展
期刊
一、取材生活出示一张长方形纸张.师:同学们,这张纸是大家最熟悉的朋友,我把它请到教室来,它会给大家带来一些很有趣的问题,请大家欢迎这位朋友的光临!
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清华大学发明人:隋森芳文摘:本发明属于生物技
党的十三届四中全会以来,以江泽民同志为核心的党中央,高举邓小平理论伟大旗帜,准确把握时代发展的本质特征,坚定不移地实施科教兴国和人才强国战略,落实教育优先发展的战略
超级电容器和锂离子电池是目前有效且应用广泛的两种能量存储器件。然而随着便携式电子设备、电动车等市场的快速发展,它们对功率和能量密度提出了更高的要求。碳材料依旧是
目的进一步对生物技术及近红外光谱技术在中药鉴别及分析中的应用进行分析和探讨。方法选取东北野生人参以及人工养殖的人参各1批(200条)作为本次的研究对象,分别采用生物技
随着计算机技术、网络技术和通信技术的发展和应用,信息化已成为企业实现可持续化发展和提高市场竞争力的重要保障。详细介绍了准能公司大准铁路货运业务,及大准铁路制票管理