【摘 要】
:
β2受体激动剂是在结构和性质上都与肾上腺素近似的苯乙胺类衍生物,主要用于支气管哮喘等肺部疾病的治疗,另外β2受体激动剂具有加快动物成长,增加饲料的效果以及动物瘦肉率的作用,人服用含有β2受体激动剂残余的动物类食物很可能产生中毒情况,因此各国均加强了对β2受体激动剂的监督监测,因此加强对其检测方法的研究是非常必要的。碳纳米管和氧化石墨烯的复合材料可以结合两者的优点,使其表现出优异的性能。本研究制备了
论文部分内容阅读
β2受体激动剂是在结构和性质上都与肾上腺素近似的苯乙胺类衍生物,主要用于支气管哮喘等肺部疾病的治疗,另外β2受体激动剂具有加快动物成长,增加饲料的效果以及动物瘦肉率的作用,人服用含有β2受体激动剂残余的动物类食物很可能产生中毒情况,因此各国均加强了对β2受体激动剂的监督监测,因此加强对其检测方法的研究是非常必要的。碳纳米管和氧化石墨烯的复合材料可以结合两者的优点,使其表现出优异的性能。本研究制备了两种碳纳米管和氧化石墨烯混合材料修饰电极,组建了两种电化学传感器,并对β2受体激动剂实行了电化学测定。主要研究内容如下:
1.通过冷冻干燥法,把多壁碳纳米管和氧化石墨烯混杂合成多壁碳纳米管-氧化石墨烯气凝胶,然后和0.1%的Nafion混合涂膜在玻璃碳电极上,构建了多壁碳纳米管-氧化石墨烯气凝胶电极。利用循环伏安法和微分脉冲伏安法对克伦特罗和沙丁胺醇实行了电化学测定。研究表明:该方法制得的电极比多壁碳纳米管/Nafion电极和氧化石墨烯/Nafion电极具有更好的电化学性质,对克伦特罗和沙丁胺醇的电化学氧化和还原都有明显的电催化能力。该电化学传感器具有敏锐度好、线性范围宽、抗干扰能力强、稳定性和再现性好等亮点,可用在实际样品的检测中。
2.将氧化石墨烯和氮掺杂多壁碳纳米管混合超声,使之形成均匀稳定的混合物,涂膜在玻璃碳电极,得到氮掺杂多壁碳纳米管/氧化石墨烯修饰的电极。本研究对制备的传感器进行了扫描电镜和电化学交流阻抗测试,并用循环伏安法和微分脉冲伏安法对莱克多巴胺和特布他林实行了电化学检测。实验结果表明:该方法制备的电极比单一的氮掺杂多壁碳纳米管或氧化石墨烯修饰电极具有更好的电化学性能,它对莱克多巴胺和特布他林的电化学氧化都有很好的敏锐性、不变性、重现性和抵抗干预物的能力,并且可以用于实际样品的检测。
其他文献
近年来,利用植物吸收重金属的特性来解决土壤污染问题受到广泛关注,而微生物发酵是处理超积累植物,避免重金属二次污染的有效方法之一。如何筛选到耐受重金属的微生物,以强化其对超积累植物的分解发酵能力,一直都是生物修复方面研究的热点问题,但是提升微生物对重金属的耐受性以及对其进行遗传多样性的分析还鲜有报道。因此,本论文通过提高微生物生存环境中的镉浓度,筛选出了高耐受镉的发酵菌株并研究其遗传多样性。 采用
随着科学技术的提高,人们的生活水平也有了很大的改善,但是随之而来的能源和环境问题也日益增加。发展新型的光催化材料,以太阳光为激发光源,彻底降解有机污染物,是目前光催化科学研究热点。金属氰胺化物是一类新型的光催化剂,相关研究报道较少,特别是基于单氰胺镍材料的光催化性能上未见文献报道。 首先以NiCl26H2O和H2NCN为前驱体,采用化学沉淀法合成了单一的Ni(HCN)2。通过X-射线衍射(XRD
目前,由于各种来源的生活染料和工业生产有机污染物排放引起的环境污染日益严重。光催化技术因其可以彻底分解有机污染物产生无毒的CO2和H2O而引起广泛关注。以TiO2和ZnO为代表的宽禁带半导体材料,表现出良好的光催化性能。但是,由于其只能被波长低于400nm的紫外光激发,使得光量子利用率较低,限制了其应用。通过探索新的合成方法,金属离子掺杂或者异相半导体复合改性,扩展其吸收光谱,抑制光生电子与空穴的
超声波预处理剩余污泥的方法得到广泛的关注和应用,但对于超声空化破解剩余污泥机制的研究并不多见。本课题从微观角度定性定量化研究揭示超声空化三种典型效应(化学效应、机械效应和热效应)破解剩余污泥的机制。 超声空化的化学效应研究通过超声波作用于纯水,寻找到了过氧化氢浓度的变化趋势,将大肠杆菌和剩余污泥一并作为研究对象,在0-40min内进行超声波破解,检测超声波破解大肠杆菌和剩余污泥后,上清液中核酸、
柞蚕丝素蛋白是一种良好的天然生物材料,含有利于细胞粘附生长的RGD序列。目前研究,家蚕的蛋白溶液工艺基本成熟,但柞蚕丝与家蚕丝结构不同,获得可溶性再生柞蚕丝素蛋白的工艺复杂且不成熟。海藻酸钠具有良好生物相容性和凝胶活性,但海藻酸钠的亲水性太强,易发生药物突释,故而引入柞蚕丝素蛋白以调节并改善海藻酸钠的突释情况。 采用现有文献报道的工艺会使丝素Ⅰ的α-螺旋结构在不同程度上转化为丝素Ⅱ的β-折叠结构
溴代阻燃剂(BFRs)是全球范围内应用最广泛的有机阻燃剂,它具有生产工艺成熟、性质稳定、阻燃性能好等优点。四溴双酚A(TBBPA)是产量和用量最大的溴代阻燃剂。TBBPA具有持久性、亲脂性和生物富集性等特点,因此,它能够从环境介质富集到生物体内,甚至可通过食物链的生物放大作用达到中毒浓度。近年来,随着人们对健康饮食重视度的增加,国内外研究检测环境中TBBPA的方法已经很多,但对于水体中TBBPA的
脂肪酶(ECl.3.1.1.3,4.6×3×3nm)是一种含有499个氨基酸的水解酶,分子量为52KDA,不同来源的脂肪酶虽然立体结构相似,但是根据其亲缘关系的远近其氨基酸序列和链的长度也存在一定的差别。脂肪酶作为水解酶可以将一些脂肪酸甘油酯水解为甘油单酯和脂肪酸等。由于游离脂肪酶具有较差的稳定性和回收再利用性,因此固定化酶技术作为提高酶稳定性和重复利用性的最佳方法成为我们研究的主要方向。本文通过
随着工业发展和人口增长,全球环境污染及能源供应需求加剧。工业废水、合成染料、重金属等有毒物质的大量排放导致全球水污染日益严重。废水中有机物的去除逐渐引起人们广泛关注,各种生物、物理和化学处理技术被用于转化和去除水中有机污染物。半导体光催化技术具有广阔的应用前景,在环境和能源方面有着重要的应用价值。以BiOI为代表的半导体材料越来越引起人们的重视。本论文研究了ZnO/BiOI、BiOI/MoS2复合
金属氧化物半导体光催化剂以其无毒、制各简易及廉价等特点而成为最常用光催化剂的主要材料。但是,纯氧化物光催化剂存在光生载流子复合率高、量子效率偏低等缺陷,直接应用受到一定的限制。而将两种金属氧化物半导体材料耦合制备成复合物可以显著提高材料的光催化性能。这是由于当两种或两种以上的半导体复合后,材料内部可能形成异质结,其光化学、光物理方面的性质会发生改变,不仅能调节单一材料的性能,而且还往往产生新的特性
聚丙烯(PP)作为一种重要的热塑性树脂,因其优良的性能和低廉的价格广泛应用于汽车、包装、机械等领域,但是PP是一种易燃材料,它的极限氧指数仅为18%左右,燃烧剧烈且产生浓烟、伴随有严重的熔滴现象,这些都严重的限制了它的应用,因此,对聚丙烯进行无卤化阻燃研究成为了当前科学研究中的一个热点。 碱式碳酸镁是一种重要的无卤新型阻燃剂,具有无毒、不挥发、热稳定性好、价格低廉、不产生二次污染等优点,但由于碱