铁基磁性碳材料用于电磁感应加热环境催化的研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:zhouxiancai0128
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电磁感应加热技术是一种通过吸收电磁能直接转换为热能的非直接接触式加热技术。该法直接在磁性材料上感应产生热量,无需加热整个反应器,改善了能量传递效率,降低了热量耗散。因此,电磁感应加热为高温化学过程提供了独特的解决方案,有望克服使用传统加热方法时带来的加热/冷却速率缓慢、加热不均匀、低能效等问题。本文制备了铁基掺氮碳纳米管磁性催化剂以及铁基掺氮碳纳米管负载银磁性催化剂,利用其电磁感应加热特性高效去除金橙Ⅱ和甲醛。具体研究内容如下:(1)通过简单的热解氯化铁和三聚氰胺制备了铁基掺氮碳纳米管磁性催化剂(Fe@NCNTs)。优化的合成条件下制得的催化剂具有均匀的碳纳米管形貌,管径为100 nm左右,铁颗粒填充在管内,氮主要掺杂在碳纳米管的表面。Fe@NCNTs为铁磁性材料,并展现出软磁性的特征。Fe@NCNTs催化剂具有较好的磁热效应产热功率,在感应电流为24 A(中心处磁场强度为2.4 k A/m),频率为300 k Hz的磁场条件下,比吸收率和有效比吸收率分别可达116.1 W/g、6.72×10-2 W/g·k Hz·(k A/m)~2,在同等磁场条件下产热功率在文献中处于较高水平。(2)Fe@NCNTs磁性催化剂在交变磁场中电磁感应产热,为活化过氧单磺酸钾去除金橙Ⅱ反应体系提供热量,实现金橙Ⅱ高效去除。Fe@NCNTs在感应电流为24 A、频率为300 k Hz的磁场条件下感应加热使得反应瓶壁温度最高到达107°C,120 min内对金橙Ⅱ的降解率将近100%,并且四次循环反应后120 min内仍能近乎完全去除金橙Ⅱ。(3)在Fe@NCNTs表面负载Ag制得Ag/Fe@NCNTs磁性催化剂,耦合电磁感应加热用于催化氧化空气中的甲醛。感应电流为24 A,频率为300 k Hz的磁场条件下,4Ag/Fe@NCNTs在交变磁场中快速感应产热,反应器壁温度2 min迅速达到72°C,10min内稳定在100°C左右。对反应气空速为120000 m L·h-1·g-1、120 ppm的甲醛气体实现近乎完全转化,50 h连续反应以及100次升温/降温循环后仍能保持近100%甲醛转化。
其他文献
报纸
中国石油信息化建设的持续推进,为数据治理、汇聚和共享奠定了良好的基础,如何挖掘数据资产的价值是未来信息化工作的核心目标。鉴于集团公司数字化转型、智能化发展的背景,本文以石油钻井工程造价管理为业务场景,以大数据分析为核心技术,研究和论证了石油钻井工程造价管理决策支持系统的目标定位、业务流程、数据范围、系统功能和管理创新性。
期刊
许多小分子抗癌药物水溶性差,毒副作用强,需要利用药物载体进行输送。木质素良好的生物相容性及天然的两亲性结构,为构建纳米载药系统输送抗癌药物提供了便利。然而传统的纳米载药系统存在选择性差、泄漏量高等问题。由于肿瘤细胞和正常细胞存在p H环境差异,可以通过制备p H响应型的纳米载药系统,满足在肿瘤特定部位释药的需求。木质素含有丰富的官能团,易于化学改性,可以通过改性赋予木质素p H敏感性制备p H响应
学位
随着我国经济和工业生产能力的快速发展,噪声越来越容易被大众所感知,并开始危害大众的身体健康。硬质聚氨酯泡沫塑料作为一种高分子材料,可以通过配方调控制备得到吸声能力良好的开孔型泡沫塑料。然而,较高开孔率下的聚氨酯硬泡力学性能衰减严重,并且聚氨酯由于本身的易燃性亦具有较大的安全隐患。因此,有必要开发力学性能、吸声性能和阻燃性能综合较优的聚氨酯硬泡以满足使用需求。首先,本文探究了多元醇复配对聚氨酯硬泡力
学位
高纯度及具有生物活性的多肽/蛋白质是蛋白质分析、应用及生物技术发展的基础。因此开发出一种新型、高效、负载量大的固定化金属亲和色谱(Immobilized metal affinity chromatography,IMAC)固定相材料对于实现蛋白质的高效分离纯化有着重要意义。针对目前含组氨酸蛋白分离技术中IMAC固定相材料传质阻力较大、处理效率较低、缺乏有效的分离分析方法等问题,本课题以IMAC理
学位
镁离子电池因其独特的特性和优势而成为极具应用前景的电化学能源存储器件。与金属锂相比,金属镁具有更高的理论体积容量、更丰富的地壳储量和更高的安全性。然而,镁离子电池的商业化还受制于两方面:一是由于Mg2+带有两个电荷,具有较高的极化特性和扩散势垒,导致Mg2+在电极材料中具有较差的嵌入/脱出动力学。二是镁和传统电解液(常规镁盐溶于极性有机溶剂)不兼容,由于电解液的还原会在Mg表面形成一层致密的钝化膜
学位
聚合物胶束作为新型药物递送系统具有良好的应用前景,但是传统的胶束存在稳定性差和释放不可控等缺点,极大地限制了其应用。增强聚合物胶束的稳定性和受控释放性被认为是解决其应用问题的一个突破口。本论文基于肿瘤组织内弱酸性和高酯酶浓度环境,设计并制备了一种新型两亲性嵌段聚合物。以疏水性抗癌药物喜树碱(CPT)作为模型药物,通过透析法制备了两种可逆共价键交联的聚合物胶束。研究了胶束的形貌、粒径大小和分布、储存
学位
超疏水涂层具有良好的防腐蚀、抑霜、自清洁等性能,可以解决生活中腐蚀、结霜等实际工程问题。然而,超疏水涂层的耐久性是制约它应用的一个重要因素,如何提高涂层的耐久性是一个亟待解决的问题。在这种背景下,本论文提出了一种耐久性超疏水涂层制备方法并进行了性能研究。它先通过低温(指室温)水热合成的方法在铝基体表面生成微米级的类盔甲棒状堆积结构,再进行低表面能处理,同时生成纳米级粗糙结构,实现超疏水化。微米级的
学位
重金属具有毒性大、难降解且易在人体内富集等特点,即使低浓度的重金属也会对人类健康产生威胁。重金属的污染来源和分布都极为相似,在实际环境中通常是多种重金属同时存在,它们之间的交互作用相比单一重金属更具复杂性和危害性。有关重金属复合污染的研究在许多方面还有待深入和完善。本文通过操作简单的液相还原法制备了一种高分散性、高活性的改性凹凸棒负载纳米零价铁材料(MATP/nZVI),探究了MATP/nZVI对
学位
精密电子元器件在高频高速运转时会集中产生大量的热量,如何快速排散这些热量,延长其使用寿命,已成为行业关注的重点。常见的散热材料热导率虽高,但与元器件之间需要粘结剂连接,存在不可忽视的界面热阻,而高效散热涂层可以直接涂敷于器件表面,避免了粘结剂的使用,是解决该类问题的最有效手段,其中环氧树脂基涂层使用最为广泛,但过低的本征热导率(0.25 W/(m·K))限制了其应用。论文针对高效散热涂层的现状,采
学位