自适应加载球式牵引减速器传动特性研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:ty532215014
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本课题来源于“面向协作机器人的双向驱动关节创新设计与柔顺控制方法研究”国家自然学科基金重大研究计划(92048201)。随着节约能源成为社会发展的主题之一,使得提高能源设备的转化效率成为近年来的研究热点之一,因此,机器人驱动系统朝着高速且高效的方向发展。虽然齿轮传动因其结构紧凑、速比大等特点被广泛应用于各类传动系统中,但由于齿轮传动在高速传动时振动和噪音较大等特点限制了其在高速传动领域的应用范围,与此同时,牵引传动因其传动特点使得其在高速传动时具有较好的传动特性,此外,由于润滑油膜的存在,其在传动时振动、噪音较小,因而,牵引传动在机器人驱动系统领域具有较大的研究价值与应用前景。本文基于牵引传动原理设计了自适应加载球式牵引减速器,并从理论层面对其进行研究与分析,为后期设计与研究提供理论基础。论文的主要研究内容:(1)基于牵引传动原理设计了一种新型行星封闭差动式自适应加载球式牵引减速器,并根据其结构特点以及几何关系建立了其理论速比数学模型。此外,考虑到牵引传动特点(应力大、存在滑动),首先基于弹性变形理论推导了自适应加载球式牵引减速器弹性变形协调方程,并对接触区域自旋的进行了分析,推导了考虑弹性变形以及自旋影响下牵引传动部件的实际当量传动半径方程。随后,根据图论法分析了自适应加载球式牵引减速器功率流向,并以此建立了考虑弹性变形以及自旋影响的实际速比模型。最后,基于牵引减速器功率流向并结合实际速比模型建立了不同功率流向下的传动效率模型。(2)基于建立的实际速比模型和传动效率模型并结合轴承设计经验,以速比和传动效率为目标采用随机求解法得到牵引传动几何尺寸,并以此建立了自适应加载球式牵引减速器三维虚拟样机模型。(3)以两圆盘试件模拟点接触情形,并根据Hamrock-Dowson点接触弹流润滑最小油膜经验公式以及膜厚比条件对接触区域内润滑状态进行估计。此外,基于弹塑性变形理论对牵引传动特性进行了分析,研究表明牵引油膜在低滑滚比阶段呈现牛顿流体特性,高滑滚比时呈现非牛顿流体特性。一方面,零自旋条件下牵引油膜的牵引系数曲线线性段斜率随着试件间的加载力增大而减小,另一方面,牵引油膜的牵引系数曲线线性段斜率随自旋增大而减小,从而使得接触区域内的损失增大,降低了牵引传动效率。(4)结合弹性变形协调方程、实际速比模型和传动效率模型对稳态下的自适应加载球式牵引减速传动特性进行研究,分析了传动过程中牵引部件弹性趋近量、轴向位移、承载能力、总滑动率(传动比误差)以及传动效率随输出力矩的变化规律。研究表明自适应加载球式牵引减速器最大承载能力约为45 Nm,此外,在其承载能力范围内传动效率最大可达91%,总滑动率最大为1.8%。
其他文献
特种车辆包括工程车辆、洒水车等都会面临负载不断变化的工况,若采用传统的变速器,整个传动系统将会出现效率低、实际油耗大、排放量大的问题。目前这类车辆的作业功能(如洒水车的洒水功能)所需的功率由副发动机提供,这使得发动机的燃油消耗量在特种车辆作业时增加,而且汽车制动时所消耗的能量无法被汽车回收与再利用。电驱动方案虽然能回收部分制动时所消耗的能量,但是电动机的能量回收效率较低且受到电池容量限制,不能很好
由致病疫霉(Phytophthora infestans)侵染马铃薯(Solanum tuberosum L.)导致的晚疫病是马铃薯种植过程中最具毁灭性的流行性病害,引起马铃薯茎叶死亡和块茎腐烂,造成巨大的经济损失。目前,化学杀菌剂是防控马铃薯晚疫病的主要药剂,但是,大量多次使用化学农药,极易引起致病疫霉抗药性增强,也存在环境污染与食品安全隐患等问题,因此,迫切需要寻找环境友好的生物防治方法来控制
集光催化氧化技术和热催化氧化技术于一体的SDC-Trombe墙可同时实现室内采暖和空气净化,有效降低建筑能耗、改善室内空气质量,极具发展潜力。结构参数对SDC-Trombe墙的性能影响较大,但相关研究存在空白,这也是本文的主要目标。本文建立并验证了SDC-Trombe墙的二维数值模型,分析了结构参数(流道高度Hwall及宽度W、上下通风口高度与流道宽度的比值Δ、形状修正系数d、翅片间距S及高度Hf
并网逆变器是微电网、新能源发电和新型电力电子化电力系统等应用中的核心功率变换设备。电流控制内环(又名电流调节器)作为并网逆变器的核心控制环节,其带宽决定了并网电流的动态性能与稳态正弦度。目前并网逆变器电流调节器都采用同步坐标系下的比例-积分(PI)控制与静止坐标系下的比例-谐振(PR)控制,而这两种方法在数字控制实现中都存在带宽的限制。无差拍预测控制作为达到理论动态性能极限的电流调节器,虽在电机控
色满酮骨架是许多天然产物以及多种生物活性分子的核心结构,具有广泛的生理活性。在药物发现和设计过程中,色满酮骨架是活性先导化合物发现和合成中重要的砌块。开展色满酮衍生物的多样性合成研究,将有助于推动该类化合物在药物研发过程中的作用。目前已报道了多种手性催化体系,高效构建具有光学活性的色满酮衍生物。但是,已报道的方法主要集中在以色酮为原料或构建含单一(或两个)手性中心的色满酮衍生物,构建含三个(或三个
柔性传感器是智能可穿戴电子设备和物联网(Io T)的重要组成部分,特别是柔性压阻传感器,因具有响应时间快、成本低和耐用性高等优点,已成为当前传感器领域的研究热点之一。但目前,柔性传感器在压力检测范围宽、灵敏度高、稳定性好和制备简单等方面,相互制约,各种性能均优难以同时获得。柔性压阻传感器的性能可通过优化敏感元件的结构和选取合适的导电感应材料两方面来提高。为此,本文选择二维材料MXene(Ti3C2
随着加工系统自动化程度和复杂程度的不断提高,切削过程的在线监测技术成为提高生产效率、降低生产成本的重要保证。切削过程监测依赖于诸多切削条件,存在数据来源多、影响因素不确定的特征,仅通过单一的基于数控系统或传感器信号的监测技术难以实现不同切削条件下对切削过程的可靠监测,影响加工质量。数字孪生作为提高监测效能的重要工具,可将多源数据的集成监测与虚拟仿真分析相结合,为不同切削条件下切削过程的仿真监测提供
随着现代工业技术的飞速发展,金属材料以其优异的力学性能广泛应用在各个领域。金属材料在生产和服役过程中因高温、高负荷、高压等外部环境的影响,容易在其表面或内部产生微小缺陷,如果不能及时地识别损伤并采取有效的措施,在重复加载的情况下使金属构件在运行时出现故障,会引发重大的安全事故,因此对金属材料的定期检测和评估显得尤为重要。激光超声成像技术作为无损检测领域常用技术之一,具备远距离、非接触、高精度和高空
齿轮传动系统是航空发动机的关键传动部件之一,保证其处于良好的润滑状态显得尤其重要。航空齿轮通常在高速、重载下运转,如果齿轮润滑设计有缺陷、不合理,不能形成可靠有效的油膜,不能隔绝齿轮表面的直接接触,会导致齿面磨损加剧,摩擦系数增大,将产生巨大的发热量,降低齿轮传动系统的传递效率,影响传动系统的平稳性,使系统发生失效。因此,开展航空齿轮弹流润滑的研究具有重要意义。本文以航空齿轮副啮合界面为研究对象,
添加稀土元素是提高AZ系镁合金力学性能的重要途径,但极易在合金凝固过程中形成高熔点粗大Al-RE金属间化合物相。如何调控这类Al-RE化合物相是镁合金领域的研究方向之一,本文以AZ80-Ce合金为试验基础合金,通过合金化的方法制备了不同La含量的AZ80-Ce-x La(x=0、0.5、1)合金。利用XRD、SEM、EDS、EPMA和TEM等表征手段研究了La添加对AZ80-Ce合金中第二相的影响