B4Cp/6061Al复合材料制备、微观组织与高低温力学行为

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:wang3398218
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与纯铝或铝合金相比,颗粒增强铝基复合材料(PRAMCs)因具有较高的比刚度和比模量、较低的热膨胀系数、良好的高温性能和抗蠕变性能及较好的耐磨损性和抗疲劳性能等特点而被广泛应用于航空航天、武器装备、汽车及电子等领域。进入21世纪以来,PRAMCs的应用范围被进一步扩大,各领域对PRAMCs的比强度、比刚度和轻量化提出了更高的要求。此外,为了满足不同领域的要求,由PRAMCs构成的重大装备核心部件通常需要服役于高温、低温和高低温交变等极端恶劣环境。因此,探索PRAMCs在不同服役温度下的力学行为,建立制备工艺-微观组织-力学性能的耦合关系,可为PRAMCs的安全运营提供科学和理论依据。本文从PRAMCs的轻量化、高比模量、高比强度及增强颗粒的增强效果与功能性出发,选择6061Al合金作为基体合金,B4C颗粒作为增强体。目前,B4Cp/6061Al复合材料作为结构材料的一种,有关其在超低温下的力学性能、强化机制及断裂机制的报道较少,这在一定程度上限制了该复合材料在低温条件下的应用。此外,B4Cp/6061Al复合材料具有良好中子屏蔽效果。B在吸收热中子的过程中可使复合材料温度升高,导致复合材料可能长期处在高温服役环境中。因此,对于B4Cp/6061Al复合材料的高温力学性能和失效行为的评价尤为关键。本文将对B4Cp/6061Al复合材料的制备、微观组织及高低温力学行为进行系统地研究和讨论,具体分为以下三个部分:(1)本文首先利用粉末冶金法制备B4Cp/6061Al复合材料,研究热压温度(833 K、853 K和873 K)对复合材料的微观组织和室温力学性能的影响,并分析不同热压温度下复合材料的断裂行为。结果表明,833-B4Cp/6061Al复合材料内部的微孔洞及873-B4Cp/6061 Al复合材料中的反应产物是造成T4态B4Cp/6061Al复合材料屈服强度下降的主要原因。然后,选取优化的热压温度(853 K)制备不同B4C增强颗粒含量(0 wt%、5 wt%、10 wt%和15 wt%)复合材料,讨论时效时间/颗粒含量与硬度/电导率的对应关系,并研究峰时效态B4Cp/6061Al复合材料的室温拉伸性能。结果发现,随着增强颗粒含量增加,复合材料的室温屈服强度和极限抗拉强度逐渐增加,而伸长率逐渐下降。此外,利用直接强化机制和间接强化机制定量地预测了不同增强颗粒含量峰时效态B4Cp/6061Al复合材料的屈服强度,预测值与实验测量值基本保持一致。对于T4态和峰时效态B4Cp/6061Al复合材料而言,室温条件下的断裂机制包括基体的韧性断裂、B4C颗粒断裂和B4C颗粒与基体的界面脱粘。(2)其次,以峰值时效5 wt%B4Cp/6061Al复合材料为研究对象,研究超低温条件下复合材料的拉伸性能、强韧化机制及断裂机制。结果表明,当变形温度从298 K降至77 K,峰时效态5 wt%B4Cp/6061Al复合材料的屈服强度由340 MPa增至380 MPa,抗拉强度由389 MPa增至487 MPa,伸长率由11.9%提升至15.6%。相比于室温,77 K下的加工硬化指数和均匀伸长率均明显增加,说明该复合材料在低温条件下具有良好的抗变形能力。其中,在基体中发现了与低温条件下强度和塑性的同时提升有关的变形晶粒和再结晶晶粒。此外,还探究了缺口 5 wt%B4Cp/6061Al复合材料的拉伸性能及变形过程,发现降低温度可增加缺口敏感度。同时,基于二维真实组织的应力-应变场模拟结果表明,基体损伤更倾向于从缺口尖端产生,并向颗粒附近的高应力区域扩展。在77 K下,光滑和缺口试样的断裂机制与室温类似,主要包括基体的韧性断裂、颗粒断裂和颗粒与基体的界面脱粘。(3)最后,以退火态10 wt%B4Cp/6061Al复合材料作为研究对象,分析基体内及界面附近的微观组织,探究应变速率和热暴露时间对复合材料的高温力学行为的影响。结果表明,随着应变速率从10-3 s-1增至10-1 s-1,该复合材料的高温拉伸强度逐渐增加,而伸长率逐渐降低;经过长时间(1000 h)的热暴露处理后,该复合材料的高温拉伸强度和伸长率基本保持不变。此外,通过添加纳米B4C(n-B4C)颗粒进一步提升复合材料的高温拉伸强度。微观组织分析发现,n-B4C颗粒主要存在于在晶内和晶界处。n-B4C颗粒的加入可有效地延缓动态再结晶过程,使得基体晶粒发生细化、小角度晶界比例增加以及再结晶区域面积降低。当变形温度从373 K升至573 K,退火态(μ+n)-B4Cp/6061Al复合材料的高温拉伸强度增量降低,这与高温条件下由n-B4C颗粒引起的强化机制不同有关,即373 K下以Orowan强化机制为主,而573 K下以位错攀移机制为主。在高温下,不同变形温度和不同应变速率下退火态B4Cp/6061Al复合材料的失效形式为基体的韧性断裂,并伴随少量的界面脱粘。
其他文献
多孔金属是一种结构/功能一体化材料,在航空航天、国防军工、车辆交通、生物医疗等众多领域具有广泛的应用空间和良好的应用前景。相比随机结构多孔金属,有序多孔金属的结构规则有序,设计性和可控性强,因而有利于性能优化和扩展应用,因此有序多孔金属的结构设计必然是该领域的研究重点。结构设计是优化有序多孔金属力学性能的重要方法,而向有序多孔结构内部引入填充物替代原有气相,进而获得基于有序多孔金属的双连续互穿结构
双开口气波制冷机是一种以双开口气波管为核心部件,利用非定常波使两股气流进行能量交换,实现气体冷热分离的新型膨胀制冷装置。由于该装置具有结构简单、转速低、可带液等优点,故其具有广阔应用前景。目前,此类制冷机等熵膨胀效率可达65%。气波管内非定常流体与管壁间存在脉动流固传热现象,是造成等熵性能损失的重要因素之一,特别对于小流量、大膨胀比的制冷机,影响尤为显著。深入研究双开口气波管脉动流固传热与制冷强化
随着我国经济的飞速发展以及全球化的加速进行,在工业生产、经济活动、气候变化、能源生产分配、交通运输等各个领域中都产生了大体量、多类别、多维度的海量数据。其中,时间序列数据能够客观有效的反映各领域中不同现象和活动的变化过程,其背后蕴含了丰富的演变规律。对这些时间序列数据进行分析和研究便可从中学习和总结出相关的数据变化规律,而若能有效的掌握这些规律并且将其运用于实际的生产生活等活动中,便可实现优化资源
光纤表面等离激元共振(Surface Plasmon Resonance,SPR)传感技术是一种高灵敏度、操作简单及可在线检测的光学检测技术,并且具有免标记、不破坏样品成分的优势,被广泛应用于食品安全、医疗诊断和环境监测等诸多领域。葡萄糖、氨基酸和重金属离子等生物活性分子和离子作为诊断疾病、监测生物体生命活动的标志物,在生命体中的含量与人类健康息息相关。生物活性分子和离子的高精度动态检测对实现相关
随着分布式电源、电动汽车等新技术的快速发展,大量新设备接入配电网,推动着配电网向分布式、共享式、供电商和用户双向互动的智能配电网方向转变。新型配电网庞大且复杂,传统集中式保护和控制方法已经无法满足需求,分布式保护和控制方法具有逻辑简单、可靠性高和扩展性强等优点,是智能配电网的发展方向。但是,分布式算法依赖通信和决策去中心化的特点改变了传统建模和仿真的基础,使得原有分析方法不再有效,智能配电网分布式
目的:MYC在肿瘤的发生发展过程中发挥非常重要的作用。当在MYC诱导的肿瘤模型中阻断其表达时,肿瘤生长会出现抑制甚至完全衰退,这提示靶向MYC可有效抑制肿瘤发生发展。然而,直接靶向MYC的抑制剂目前没有开发成功,间接靶向MYC成为替代策略。MYC高度激活诱导癌细胞G1期检查点失活和基因组不稳定性上升以促进肿瘤发生,但也导致肿瘤细胞内复制压力过高。为了逃避过度的复制压力引起的细胞凋亡,肿瘤细胞会更加
农药创新对于虫害防治至关重要,现有的化学农药面临着产生抗药性快、人畜毒性大等一系列问题,究其根源在于靶标种类单一,因此农药创新的关键在于靶标创新。昆虫的生长发育伴随着周期性的几丁质重塑过程,对昆虫几丁质代谢系统中的关键酶进行干扰被认为是虫害防治的有效手段之一。在昆虫体内,参与表皮几丁质降解的关键酶主要为糖基水解酶18家族几丁质酶,包括几丁质酶Ⅰ号酶(ChtI)、几丁质酶Ⅱ号酶(ChtⅡ)和几丁质酶
单核细胞增生李斯特氏菌(Listeria monocytogenes,L.monocytogenes),是一种重要的食源性致病菌,由其引发的李斯特菌病已经对人类健康和安全产生了严重危害。该菌除了能在低温、酸性或者高盐分等环境中生存,又能粘附于食品加工设备表面形成难以清除的生物膜。本研究选取中国的14种主要柑橘栽培品种,提取其精油(Essential oil,EO)并分析组成成分,通过比较不同品种精
驾驶员监控系统可有效提供有关驾驶员注意力、车辆操纵和控制状态等参数的重要信息,而识别系统往往都需要专用的高成本设备才能达到识别性能。现如今,除了使用传统的摄像头或可穿戴设备,用于驾驶员状态和手势监控方面等无线技术也得到了广泛的关注。由于WiFi信号的细粒度信道状态信息(CSI)的普遍存在,受此启发,我们利用WiFi设备,实现不需要携带硬件设备的低成本驾驶员状态和手势识别,此外,该方法不需要特殊的硬