基于温和条件再生构筑高强度聚多糖纳米纤维材料

来源 :武汉大学 | 被引量 : 0次 | 上传用户:lifeisaboat
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
可持续发展战略已成为全球性共识,合理开发和利用自然界可再生生物质资源日益引人注目。纤维素和甲壳素是地球上最丰富的生物质资源,属于碳水聚合物,统称为天然聚多糖。它们具有安全、无毒、生物相容和生物降解等特点。因此,天然聚多糖材料备受青睐,在污水处理、食品农业、组织工程、纺织加工等领域展现出巨大的应用前景。但是,天然聚多糖材料在实际应用中却受制于较弱的力学性能。近年,聚多糖材料的力学强度通过纳米填充、化学交联或与合成高分子复合的方法得到一定程度的改善,但效果有限,却影响了天然聚多糖固有优点。因此,本论文旨
其他文献
随着我国电力事业的飞速发展,直流输电由于其输送距离远、容量大、损耗低等诸多优点得到了越来越多的应用。当直流输电工程单极大地运行时,大量的直流电流入地导致大范围地表电位分布的不均匀,从而导致了交流电网变电站变压器中性点通过直流电流,产生直流偏磁现象,对电力系统的安全稳定运行造成了极大的危害。要对直流电流分布问题进行计算和分析,大地模型的建立是极为重要的一步。由于直流输电工程输送距离远,直流电流穿透深
学位
自从2009年有机-无机杂化卤化物钙钛矿太阳能电池第一次问世以来,经历了非常快的发展速度。光电转换效率从当时的3.8%,到现在已经达到了23.7%,非常接近硅太阳能电池。由于有机-无机杂化卤化物钙钛矿太阳能电池具有高效、低成本、制备简单等优点,极有可能成为第三代太阳能电池。但是,钙钛矿太阳能电池稳定性差以及含有毒重金属铅(Pb)这两个致命的弱点,给钙钛矿太阳能电池的商业化应用带来了巨大的挑战。针对
学位
在过去几年里,有机太阳电池得到了突飞猛进的发展。由于非富勒烯受体的开发和器件工程的发展,单结有机太阳电池已经取得了超过16%的光电转换效率。为了进一步推动有机太阳电池的发展,需要发展能够在厚膜状态下仍能取得高效率的有机太阳电池材料(包括界面材料和光活性层材料)以满足大面积加工技术的要求。此外,还需要发展基于高效有机太阳电池的厚膜加工工艺、绿色溶剂加工工艺,制备可绿色溶剂加工高效大面积有机太阳电池。
学位
近年来,全球变暖和环境污染已成为世界范围内公认的难题。这迫使人们要不断探索高效的清洁能源存储手段,锂离子电池便是其中一种绿色而有效的储能技术。然而,电动汽车和大型储能系统的不断发展,使得锂离子电池在成本、安全性、能量密度和充放电性能等方面难以有所突破。和传统的锂离子电池材料相比,有机电极材料则拥有比容量高、种类丰富、成本低廉(主要是碳、氢、氧、氮等元素)、可持续性等优点。另外,有机材料的机械强度与
随着我国城市与工业的快速发展,大量的城市与工业固体废弃物随之产生。据统计,2017年,我国排放了超过3亿吨的城市固体废弃物以及33亿吨的工业固体废弃物。与此同时,作为水泥生产大国,我国水泥工业每年消耗了大量的石灰石、煤等不可再生资源。利用水泥窑协同处置固体废弃物,将废弃物作为替代原料或燃料用于水泥熟料的生产,既可以解决固体废弃物带来的环境问题,还可以减少石灰石、煤等不可再生资源的消耗,是水泥工业可
学位
目前,我国的城市河道污染问题严峻,治理黑臭水体是国家和地方水生态环境保护的重大需求,黑臭沉积物的研究是黑臭水体治理的重要基础。过碳酸钠(sodium percarbonate,SPC)作为一种高效的氧化剂在土壤、地下水和工业废水中的污染物降解已有研究,但尚未见关于SPC作用于黑臭沉积物中的相关报道,且有关SPC对微生物菌群的影响了解极少。据此,本文以城市河道的黑臭沉积物为研究对象,在探索SPC剂量
学位
酸性矿山废水(Acid Mine Drainage,AMD)是一类具有高酸度,高重金属浓度及高硫酸根离子浓度特征的废水,通常在矿区开采时或废弃后,由裸露的尾矿在雨水或径流的冲刷下溶解氧化形成。这些AMD的大量排放给矿区周边地表水、沉积物、土壤和生态环境造成了严重污染。AMD中富含的重金属等污染物进入土壤后,直接威胁着周围农业生态系统生产力与农作物食品安全。在矿区生态系统中,微生物所驱动的各类地球化
近年来,我国大气污染控制成效显著,空气质量已经有了明显改善,空气中PM2.5浓度大幅下降,但以挥发性有机物(VOCs)排放的持续增加,导致以臭氧(O3)为特征的大气复合污染问题却日趋严重。削减与控制大气污染物的排放是解决上述问题的关键。其中,催化氧化技术因具有经济高效、副产物较少等优点,已成为大气污染物排放控制最主要的技术。  本文选取广泛应用的铈基催化剂作为研究对象,以甲苯为目标污染物,通过控制
学位
酱油作为日常生活中最常见的调味品,在我国以及东南亚地区有着悠久的使用历史。随着酱油产量的不断提高,如何处理酱油生产过程中的副产物-酱油渣也成为摆在人们面前的一个难题。酱油渣中富含水(40-70%),盐(5-15%)以及其他可被再利用的组分如油脂,粗蛋白等。目前,酱油渣主要用于生产饲料、鲜味剂等低附加值产物。酱油渣的高含盐量和缺乏深加工技术是制约酱油渣得到高值化利用的两大因素。为解决这些问题,本文采
学位
太阳能光电化学(PEC)水分解制氢技术,能够将太阳能有效地转换和存储为清洁、可再生的氢能,是理想的太阳能储存方式。III族氮化物GaN及其合金InGaN纳米柱带隙在0.65~3.4 eV内连续可调,有望实现对几乎整个太阳光谱的利用,是理想的光电极材料,在太阳能PEC水分解领域具有巨大的应用潜力。尽管InGaN纳米柱的PEC解水应用研究得到了人们广泛的关注,目前仍存在以下几方面的问题,制约着其PEC
学位