【摘 要】
:
某大功率机车检修段现阶段机车转向架螺栓装配的工艺要求主要依靠纸质手册,为了提升螺栓装配效率,需要研究开发利用增强现实技术的机车转向架螺栓辅助装配AR系统。机车转向架螺栓众多且在装配时需要能将每个螺栓都进行识别和定位,现有的增强现实技术无法同时满足这两个要求,本文采用YOLOv3目标检测算法实现增强现实,研究了虚拟指示的稳定跟踪和螺栓装配作业正确性监管,主要研究内容如下:首先,研究了基于YOLOv3
论文部分内容阅读
某大功率机车检修段现阶段机车转向架螺栓装配的工艺要求主要依靠纸质手册,为了提升螺栓装配效率,需要研究开发利用增强现实技术的机车转向架螺栓辅助装配AR系统。机车转向架螺栓众多且在装配时需要能将每个螺栓都进行识别和定位,现有的增强现实技术无法同时满足这两个要求,本文采用YOLOv3目标检测算法实现增强现实,研究了虚拟指示的稳定跟踪和螺栓装配作业正确性监管,主要研究内容如下:首先,研究了基于YOLOv3目标检测算法的增强现实流程,分析了影响虚拟指示稳定跟踪的因素,包括图片数据集的图片丰富性,待检测图片的清晰度和大小,以及识别结果的预处理。通过对这些内容进行优化和处理,提高了目标检测的识别精确率和实时性,实现了虚拟指示的稳定跟踪。其次,分析了螺栓装配作业正确性监管的需求,根据需求结合螺栓装配的基本流程,设计了螺栓装配作业正确性监管的解决方案,提出了基于遮挡的螺栓装配作业正确性监管和基于坐标匹配的螺栓装配作业正确性监管。通过实验,测试和讨论了两种监管机制的准确性和高效性。最后,分析了机车转向架螺栓辅助装配AR系统的需求,完成了系统的总体方案设计。利用基于YOLOv3的增强现实技术,完成了虚拟指示指引螺栓装配。结合虚拟指示的稳定跟踪和螺栓装配作业正确性监管,实现了机车转向架螺栓辅助装配AR系统。通过案例验证,各项功能均已实现,达到了预期的效果。
其他文献
近几年来,计算机视觉飞速发展,与之相关的应用也已经进入到人们的日常生活中。识别自然场景图像中的文本还有许多问题需要解决。自然图像中的单词通常具有不规则形状,这是由透视变形,弯曲的字符放置等引起的。在某些场景中,存在弯曲变形的文本,导致部分识别方法的识别率较低。为了提高文字识别率,我从文字识别网络的特征提取网络出发,将普通的CNN网络用ResNet网络替换,因为ResNet网络更深,解决出现网络退化
图像识别技术有着广泛的应用场景,在应对大数据时代海量数据的处理和分析时,传统的图像识别技术经常会遇到性能问题,而量子计算具有独特的性质,可以利用量子计算来解决传统算法的运算效率问题。本研究致力于利用量子计算来加速图像识别技术,由于量子计算的相关研究尚不成熟,所以主要关注了图象识别领域的一个基本任务即数字图像识别,进行量子数字图像识别的研究。现有的量子计算研究及算法通常是使用量子线路表征的,这与经典
随着计算机技术的不断发展与进步,企业利用互联网在各大招聘网站发布招聘信息,求职者结合自身情况选择对应的岗位进行应聘。企业单位日益面对数量巨大,种类繁多的电子简历文档,单依靠人工进行筛选和录入简历信息不仅效率低下,而且需要耗费大量的时间精力。因此,研究如何利用现有的计算机技术从各招聘网站进行批量下载企业需求的各类简历文档,并快速准确的自动提取出企业关注的重要信息进行结构化存储具有重要的现实意义。针对
随着无纸化阅卷技术的发展,实现全题型自动化评分过程是未来发展的趋势。现有的无纸化评分系统可实现客观题自动评分,但对于主观题仍然需要依赖人工评分来完成。而人工评分效率低,耗费大量人力物力的同时,也因阅卷者的主观情绪、认知水平不同导致评分标准不一致,从而破坏了阅卷评分公平公正的原则。虽然使用计算机进行主观题自动评分能够在一定程度上改善这些问题,但现有的系统更多的是针对于非作文类题型,对于主观题细分题型
目标跟踪是计算机视觉的一个研究子领域,其有很多的应用场景。目前单目标跟踪的研究已逐渐趋于成熟,但是对于多目标跟踪,由于其目标不确定性、遮挡、数据关联等难点,所以目前多目标跟踪还有很多需要去解决的问题,其具有巨大的发展空间和研究意义。多目标跟踪应用场景之一智能交通系统,车辆计数是其中的关键,研究该应用场景也是具有非常大的应用价值的。针对DeepSORT多目标跟踪算法存在的问题,提出了改进的Deep
空地协同网络由立体空间多功能节点构成,面对多样化任务,承载多类型的动态业务。根据空地自组织协同场景下的不同业务请求,需要多速率匹配与自适应物理资源调度机制实现多业务信息融合通信。针对这一问题,本论文研究面向空地自组织协同的融合通信技术,设计了支持多速率的物理层融合通信体制,基于典型空地协同物理信道进行了多速率通信性能分析,给出了融合通信体制下的MAC层架构设计,提出了一种面向多业务速率匹配的自适应
随着智能终端和移动互联网的普及,世界已经进入智能制造和数字消费的时代。基于位置的服务已经渗透到人们生活的方方面面,在餐饮、物流、零售、制造、医疗、安防等行业有着广泛的应用前景。由于现代建筑的空间越来越大和结构越来越复杂,人们在室内所处的时间也越来越长。室内定位需求的增长使得室内定位成为定位技术研究的一个热点。基于CSI的分区指纹定位过程同已有指纹定位一样包含离线和在线两个阶段。离线阶段的第一个任务
知识抽取是指对数据进行检测、筛查并解析,获取其中的知识并存储到知识库的技术。情报分析系统中需要依据情报类别获取情报中发生的事件以及参与事件的实体,此时基于自然语言处理的知识抽取技术能够高效的解决这类问题。为了实现英文情报分析系统中实体、事件的抽取及展示,设计并实现了知识抽取算法,并结合前后端及数据库构建出完整的应用系统。首先介绍了知识抽取算法的开发背景,然后梳理了知识抽取技术的国内外概况,对项目实
短语识别技术在语义理解任务中扮演着十分重要的角色。短语识别技术对已经正确分词和词性标注好的句子,自动划分出不同单元块的短语,可以提升计算机对自然语言的理解能力,也对后续的深层的文本意图、情感分析等环节有很大帮助。为了得到准确率较高的短语识别模型,对用户输入数据进行了清洗,过滤其中无意义的符号,并按照不同类别符号切分单句;基于CBOW模型训练了word2vec中文词向量并随机初始化训练词性向量,拼接
传统中心化系统之间难以达成互信,难以实现信息数据共享,使用传统方法在中心化系统之间实现数据交互需要耗费大量人力与时间成本。区块链技术具有天然去中心化的特性,能够通过技术手段解决不同机构之间互信的问题,因此将应用迁移到区块链平台上能够减少人力与时间成本。从传统系统迁移到区块链系统时,存在数据交易顺序难判定、上链数据交易无法修改的问题。因此需要构建面向多方数据迁移的链上修复机制。设计了面向多方数据迁移