加拿大油砂沥青加氢减粘研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:ayin2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,世界主力油田的开采已进入中后期,世界原油重质化日趋严重。而非常规资源储量巨大加工前景广阔,然而非常规能源重质油普遍具有粘度大密度大的特点,给劣质重油的储存运输带来了巨大的挑战,对重质油减粘改质技术的开发已经成为现实的迫切需要。加氢改质减粘的前提是保证体系不生焦,为了尽可能提高加拿大油砂沥青和催化剂的利用率,需要对加氢过程进行精确地控制,本论文以典型的劣质重油—加拿大油砂沥青为研究对象在0.5L间歇反应釜上进行加氢减粘反应,对改质油性质和生焦情况进行分析,探索加拿大油砂沥青改质减粘的反应规律;并基于研究结果探讨了合理的加拿大油砂沥青加氢减粘的机理。本论文取得主要结果如下:1.对于加拿大油砂沥青,采用钼系催化剂,在390-415℃下,氢初压10-14MPa,反应时间30min-4h,搅拌转速800r/min进行加氢改质,加氢减粘后油品粘度由50℃下的56600m Pa·s可以降低到几十毫帕秒,减粘效果非常明显;可以满足管道运输的需要。2.反应过程中催化剂的存在可以明显增加氢气的消耗;对比加入催化剂和不加催化剂的反应结果发现加入催化剂在一定程度上可以减少结焦,同时加入催化剂后改质油粘度下降,收率提高。3.反应压力的升高可以明显抑制结焦的产生,可以改善产品质量,提高反应深度。反应温度的提高和反应时间的增长都会增加氢气消耗促进加氢,同时也会增加结焦的可能性。在保证不结焦的前提下,随着反应温度的提高,最短成焦时间会迅速缩短;反应温度升高和反应时间增加都会促进改质油粘度的降低,但存在一个最佳值。4.加拿大油砂沥青经过加氢后粘度降低的机理主要是反应后油品沥青质或胶质的转化,反应初期以沥青质轻质化为主,中期主要是胶质的转化。此外,杂原子和金属含量的降低也促进了粘度的降低。
其他文献
近年来,由于油品化学助剂的使用,油品中的有机氯含量增加。有机氯会造成管道和设备的腐蚀与堵塞,并使催化剂中毒。因此,有必要对有机氯含量高的油品进行有机氯的脱除研究。脱除有机氯的前提是研究油品中有机氯类型,然而对于油品中有机氯类型的检测并没有标准的气相色谱方法,因此建立油品中有机氯的气相色谱分析方法,研究油品中有机氯的分布、类型和脱除是非常重要且必要的。首先,建立油品中有机氯化物的气相色谱分析方法,获
随着石油的大量消耗及不断开采,轻质石油资源变少,开发利用高凝高黏等非常规石油资源的需求日益迫切,因此对稠油降黏技术的研究具有重大意义。微波技术是一种比较理想的降黏手段,但微波降黏效果并不稳定,对某些原油可以实现不可逆降黏,但对某些原油可能会使得其黏度增加。微波作用的方向性及作用效果最大化方面还缺乏系统、深刻的认识,致使这一问题还未得到根本解决。因此微波降黏技术的理论研究是使其走向实际应用的关键。本
柴油加氢处理工艺可以提高柴油的品质,是炼厂中常用的加工手段之一。对柴油加氢处理过程进行建模可以指导加工过程,实现炼厂的经济最大化。并且氢气溶解于液相柴油中是加氢处理的前提条件。由此,本文提出基于修改型亨利方程构建柴油氢气溶解度模型的方法,并将此运用到柴油固定床加氢处理分子转化过程建模中。本文利用柴油中典型的烃类化合物的氢气溶解度实验数据,构建亨利系数与温度和液相氢气浓度的关联式。并找寻烃类化合物的
本论文来源于M炼油厂氢气系统优化项目。目前M炼油厂使用天然气制氢工艺,导致制氢成本较高。M炼油厂的大量氢源均排放至燃料气系统或火炬系统,未回收利用,致使炼厂气中氢气、轻烃等组分的资源浪费,并存在环境污染等问题。本论文对M炼油厂的氢气系统进行氢夹点分析,得到可回收的氢源物流。经选择合适的工艺路线并设计一套脱烃脱硫装置,对氢源流股进行处理。使用图解法对M炼油厂的氢气系统进行分析,得氢夹点88.59%以
重油中氮化物对油品的安定性及清洁利用存在负面影响,采用加氢处理工艺是重油脱除含氮化合物的主要手段,重油含氮化合物的分子层次转化信息是工艺和催化剂开发的基础。高分辨质谱是重油分子组成表征的有力手段,但仅通过高分辨质谱的直接检测尚缺乏必要的结构信息。分子结构决定了分子性质及反应行为,因此基于高分辨质谱技术进一步开发分子结构解析方法具有重要意义。本文以重油及其加氢产物中的氮化物为研究对象,以高分辨质谱为
随着原油重质化、劣质化趋势的加剧以及车用柴油质量指标要求的不断提高,降低柴油中的硫含量以达到清洁油品的要求显得尤为的重要。目前加氢脱硫是工业上实现劣质柴油深度脱硫最关键的技术之一,其核心是设计与开发高活性的加氢脱硫催化剂。一般劣质柴油加氢脱硫催化剂是以氧化铝为载体,其表面只有L酸中心,没有具备氢解功能的B酸中心,且氧化铝与活性金属之间相互作用过强,不易形成高活性的加氢中心。因此论文从酸性、加氢活性
天然气作为优质清洁能源,在我国能源消费结构中的比重逐年稳步增加。然而,天然气净化过程需消耗大量能源,尤其是高含硫天然气的净化过程,具有较大节能潜力。在净化过程中,公用工程需提供大量中低压蒸汽,是耗能的主要单元,也是节能降耗的难点。这是因为天然气处理量会因上游产气量和下游需求量而发生变化,使得净化所需蒸汽量也随之波动,而相伴净化工艺的蒸汽管网系统错综复杂且计量难以准确、全面,造成现场缺乏对天然气处理
随着石油资源重质化趋势的加剧,渣油加氢处理技术在重油轻质化的过程中发挥着越来越重要的作用。而渣油加氢脱金属(HDM)是重油加氢处理工艺开发过程中的重要组成部分,对保护后续加氢催化剂以及提高油品质量发挥着关键作用。重油中金属化合物分子尺寸较大,且大部分具有较高的反应活性,导致金属化合物在催化剂孔道中的加氢反应过程受到严重的扩散传质影响。因此,研究金属化合物在催化剂孔道中的反应和扩散规律,可以为优化H
近年来随着原油日趋劣质化、重质化与清洁油品质量升级步伐不断加快以及化工原料需求不断增长之间的矛盾日益突出。加氢裂化作为可以直接生产清洁燃料及调整产品的唯一技术手段成为炼化企业生产清洁燃料或者具有高附加值的化工产品的必经之路。加氢裂化工艺最重要的组成部分就是加氢裂化催化剂的研发,催化剂的性能直接影响着加工产品的质量,因此加氢裂化催化剂的研发至关重要。Y分子筛具有独特的三维孔道结构,而且具有适宜酸性,
碳酸盐岩储层开发在油气勘探开发领域占据重要地位,近年国内新发现的碳酸盐岩油气田埋藏比较深、储层物性差,而且油气藏非均质性强、连通性差,给酸压技术带来新的挑战。为了达到理想酸化效果,酸压技术中常用到胶凝酸等缓速酸液体系。酸液稠化剂作为缓速酸液中最重要的添加剂,一直都是油气田开发领域的研究热点。常规酸用稠化剂耐温性能差,导致酸岩反应速度快,酸化效果不理想。为了提高酸化的效果,一般会使用具有高质量分数稠