光敏分子在小球藻光合产氢以及抑制蓝藻生长中的研究

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:xuzhidanxu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蛋白核小球藻、蓝藻是微藻中的典型藻种,是自然环境中的简单的初级生产者。对微藻的研究可以帮助我们人工提高光合作用效率,提供绿色能源,以及改善生态环境。在石油资源日益缺乏的现今,氢气作为一种绿色能源受大众追捧。蛋白核小球藻是一种已商业化培养的藻中,除极具营养价值外,其中富含氢酶,是天然的氢能工厂,在绿色能源方面有很好的应用前景。但微藻的过度繁殖会损害生态系统,例如蓝藻水华事件。因此针对抑制有害藻类生长方面的研究有助于预防水华的形成,以及恢复已发生水华的水体。本论文对以上2方面开展了工作,具体如下:(1)利用曙红Y在光照下产生单线态氧(~1O2)的能力诱导蛋白核小球藻更多的类胡萝卜素,并通过转录组分析进行确认。类胡萝卜素是光合系统重要成分之一,起到猝灭单线态氧,辅助光能吸收,保护类膜结构稳定的作用。我们利用上述结果,使亚硫酸氢钠消耗细胞内氧气的同时,降低了亚硫酸氢钠对光合系统的损害。在维持乏氧环境的同时保留了一定的电子源,达成蛋白核小球藻光合产氢的目的。(2)我们发现奋乃静对蓝藻有较强的抑制效应。因此选取了已商业化的同系列吩噻嗪化合物:奋乃静、硫利达嗪、三氟拉嗪、氟奋乃静、氯丙嗪、2-甲巯基吩噻嗪。通过各个化合物对蓝藻的抑制效应结果进行对比,硫利达嗪对蓝藻的抑制效果最好。其抑制效应的机理可能是吩噻嗪类化合物对电子传递链的抑制。此外还研究了硫利达嗪对蛋白核小球藻的抑制效果。发现其对抑制效果比蓝藻弱,这可能的原因有(1)蛋白核小球藻的细胞壁具有较厚使细胞内硫利达嗪浓度较低(2)蓝藻电子传递也在细胞膜上存在,硫利达嗪能更快到达靶点。有较好的的应用前景。
其他文献
土地利用/覆盖变化通过影响生态系统的结构与功能,改变生态系统服务的提供能力,从而深刻影响人类福祉。生态系统服务是将自然资本(生态系统结构和功能)与人类福祉联系起来的桥梁和纽带。通过保护生态系统服务,促进土地利用优化是保持景观可持续性的重要途径。但目前依然缺乏综合考虑多种生态系统服务之间权衡与协同的土地利用优化方案,而生态系统服务簇可以识别生态系统服务之间的相互作用关系,为可持续土地利用规划提供了一
学位
金属酞菁配合物(MPc)是平面芳香型大环配合物,由于其18π电子平面芳香型结构,MPc具有诱人的光学、电子和磁方面的特性,可用于各种应用,如MPc广泛应用于催化、化学传感、光电子器件、太阳能电池、生物医学等各个领域。本文合成了三类金属酞菁配合物,对这三类金属配合物进行了光物理性质研究。具体内容见以下两方面。1.酞菁配合物的合成及其光物理性质研究首先,本文对八羟基酞菁配合物进行了合成及表征。设计了两
学位
口袋公园是城市公园的组成部分,随着公园城市理念的发展,国家越来越注重口袋公园的建设,提倡建立社区十五分钟生活圈。“口袋公园带”将城市口袋公园串联起来,具有较高的可达性,以人为本进行景观营造,满足市民日常需求,在一定程度上维护城市生态环境。在宏观上促进城市微更新、优化城市布局、提高城市生态系统稳定性,促进城市绿色空间开放,推进公园城市建设。同时口袋公园的建设可以促进经济可持续发展,带动相关产业提高经
学位
天然酶是一种具有特异性催化作用的蛋白质或RNA,是一种重要的生物催化剂,但其存在着成本高、稳定性差、重复利用率低等诸多缺点。为了弥补天然酶存在的缺点,大量人工模拟酶被开发了出来,它们和天然酶性质相似,却有着更高的稳定性和更低的成本,具有更广阔的应用前景。普鲁士蓝纳米酶(PB)就是一种典型的人工合成纳米酶材料,它具有成本低廉、合成简单、生物安全性高等大量优点,同时它也具有较好的光热性能和类酶催化活性
学位
近些年随着经济增长和技术水平的提高,人类对各种能源的需求不断增加。运输、家庭和工业生产中化石材料的消耗会向大气中释放有毒气体。环境中存在着大量的挥发性有毒有害有机化合物(VOCs),它们已经严重污染了环境并对人类健康和自然环境构成了极大的威胁。因此,对VOCs高灵敏度和低检测限的实时监测对保障人体健康安全和环境污染评估十分重要。传统的气体分子检测方法例如气相色谱、紫外吸收光谱和吸收光谱等技术,它们
学位
化学动力学疗法(CDT)通过触发芬顿反应或类芬顿反应,在金属离子(包括Fe、Mn、Co、Ag和Cu)的辅助下,催化细胞内的过氧化氢(H2O2)生成细胞毒性羟基自由基(·OH),被认为是一种副作用小、高度肿瘤特异性的治疗方法。但由于肿瘤微环境(TME,p H≈6.5)中还原性物质的存在和较低的H2O2浓度,CDT的治疗效果总是被削弱。因此,迫切需要制定策略来提高基于芬顿反应的CDT的效率。该论文通过
学位
传统化学动力学疗法(Chemodynamic therapy,CDT)主要通过Fe2+、Cu+、Mn2+介导的Fenton或类Fenton反应将内源性过氧化氢(H2O2)转化为高细胞毒性的羟基自由基(·OH),从而打破细胞内的氧化还原平衡,并进一步诱导细胞凋亡和坏死。然而,肿瘤细胞内的H2O2含量仍不足以产生足量的·OH来实现优异的抗肿瘤效果。因此,迫切需要新型高效的·OH生成策略。Mn2+可以催
学位
根据Warburg效应,肿瘤细胞生长需要氧气和大量的营养物质。除此之外,肿瘤相关巨噬细胞(TAMs)是在各种癌症模型的肿瘤微环境(The tumor microenvironment,TME)中发现的主要免疫细胞类型,对于生长中的肿瘤,发现M2表型的巨噬细胞会促进肿瘤细胞的生长和侵袭,触发血管生成,同时降低T细胞活性。因此,开发对抑制肿瘤细胞能量代谢和诱导巨噬细胞极化的纳米系统对于肿瘤治疗非常有意
学位
磁共振成像(MRI)是实验和临床中常见的成像工具之一,具有出色的组织对比度、高空间分辨率、无创性和多功能等优势。但是病变组织和正常组织之间的固有信号差异很难在MR图像上检测到。为此需要引入磁共振造影剂来提高磁共振诊断的灵敏度,并提供更准确的磁共振图像。钆基螯合物是临床上传统的MRI造影剂,但需要改善弛豫率和药代动力学等问题。纳米粒子可以实现更高的弛豫率,改善代谢问题,还具备可自由修饰等优点。团簇类
学位
化学动力学疗法(CDT)是将低毒性的过氧化氢(H2O2)通过芬顿和类芬顿反应产生高毒性的羟基自由基(·OH)实现肿瘤治疗的目的。CDT不需要外加条件即可发生,并且生物毒性低,已经成为广受关注的一种治疗策略。由于肿瘤微环境(TME)的特殊性,其酸性不足以满足芬顿和类芬顿反应的最佳pH条件,并且过表达的还原性物质谷胱甘肽(GSH)会通过氧化还原反应清除CDT产生的·OH,使得CDT的治疗效果并不理想,
学位