聚多巴胺纳米颗粒对脑缺血再灌注损伤的神经保护作用的研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:chiivy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
背景:脑卒中是对人类威胁最大的脑血管疾病,也是世界上第二大死亡原因。尽早建立再灌注会导致氧化损伤,炎症反应以及随后的兴奋毒性细胞死亡。多巴胺自聚合衍生而成的聚多巴胺纳米颗粒(Polydopamine nanoparticles,PDA)具有优异的自由基清除能力,引起了广泛关注。本研究旨在探讨PDA是否可以在脑缺血再灌注损伤中发挥其神经保护作用。方法:采用大脑中动脉闭塞(Middle cerebral artery occlusion,MCAO)建立大鼠局灶性脑缺血再灌注模型。根据造模和处理方案的不同将成年雄性Sprague-Dawley(SD)大鼠(250~300g)随机分为四组,分别是Sham+NS、Sham+PDA、MCAO+NS和MCAO+PDA组。PDA治疗组的大鼠腹膜内注射PDA 5 mg/kg,而生理盐水(Normal saline,NS)处理组的大鼠则给予相同的容量生理盐水。随后评估其神经功能、脑梗塞体积、脑含水量和行为学测试,使用Western blot分析和ELISA试剂盒检测NF-κB信号通路、氧化应激水平和炎症细胞因子(包括TNF-α,IL-1β,IL-10等)的表达;通过免疫荧光观察小胶质细胞的活化程度;另外通过体外和体内实验对PDA的生物安全性进行评估,。结果:通过体外和体内实验,PDA证明了它的生物安全性,在中低浓度时对脑肝肾等重要脏器没有明显的不良影响。万古霉素血脑屏障通透性实验也证实了PDA可以顺利的透过血脑屏障,进入脑脊液中。腹腔内注射PDA可减轻局灶性脑缺血再灌注损伤后引起的神经功能缺损,降低了m NSS评分,差异具有统计学意义(p<0.05);减少了脑梗塞体积并改善了脑水肿状况(p<0.05)。与NS处理组相比,PDA降低了MCAO后MDA的水平,增强了SOD的水平(p<0.05);抑制了磷酸化的NF-κB的表达,降低了促炎细胞因子TNF-α、IFN-γ和IL-1β的表达,并增加了抗炎细胞因子IL-10的表达水平(p<0.05)。免疫荧光结果提示,与MCAO+NS组相比,MCAO+PDA组小胶质细胞的数量明显减少(p<0.05)。结论:PDA可减轻脑缺血再灌注损伤,抑制炎症反应,抑制NF-κB信号通路的活化、抑制小胶质细胞的过度激活。这些结果表明,PDA可能具有抑制脑部炎症反应和减轻脑缺血再灌注损伤的潜力。
其他文献
MEMS是以微电子技术为基石发展起来的多学科交叉综合的新兴研究领域,其中一个重要分支及应用领域为射频微电子机械系统(RF MEMS)。RF MEMS器件得益于其低功耗、小型化、优良微波性能、高集成度等诸多优势,在诸多领域有着广泛的应用前景。在射频系统中,可调谐微波衰减器作为调节信号电平的高频器件需求度很高。它们在自动增益控制放大器、宽带矢量调制器等射频电路中广泛应用。同时,可调谐微波均衡器能够调节
随着科学技术发展的日新月异,国防现代化亦飞速发展,隐身性能已经成为先进飞行器和其他军事装备不可或缺的重要元素。频率选择表面(Frequency Selective Surface,FSS)可以有效减小天线和飞行器的雷达散射截面(Radar Cross Section,RCS);利用空间电磁波干涉相消原理和电磁对消技术,能够有效对抗电磁干扰和缩减武器平台的雷达回波。基于上述动机,本文主要在以下几个方
人类的大脑是由上千亿个不同种类的神经细胞共同组成的极度复杂的组织结构。试图理解人类大脑的工作机制是人类追寻自然规律和自我意识的终极挑战。脑科学致力于研究分析神经系统的结构与功能,揭示各种神经活动的规律,在各个水平上阐明其机制,以及预防、诊治神经和精神疾患。核磁共振成像技术因其无损伤的优势已广泛应用于脑科学研究之中,现今大量相关科研成果均是建立在核磁共振成像数据的基础之上。本文基于深度学习算法针对脑
重金属在现代工业中被广泛使用,引发的重金属污染日益严重,已危害生态环境和人类的身体健康,成为全球性的问题。能够对水环境中重金属离子高效、便捷地检测,对构建持续、有效、实时的重金属污染监测治理体系具有重要意义。随着微/纳机电技术的快速发展,谐振传感器已实现对不同物质的痕量检测。尺寸小、灵敏度高、成本低、可用于水环境中重金属离子的检测。本文以微纳米梁谐振传感器为核心,设计了多个尺寸的悬臂梁和双端固支梁
近年来,人工智能在全球迎来了新一轮的研究热潮,在传统的机器学习算法之外,一种名为深度学习的技术被提出,其核心是模仿生物神经系统构建的神经网络,这种层层递进的模型结构由于其出色的特征提取与数据拟合能力,被广泛应用于各种人工智能产品中,如今常见的人脸检测、机器翻译、语音识别等应用都基于深度学习技术实现。深度学习应用的执行阶段包括模型训练和任务推断两个核心环节,模型训练是利用特定数据集修正神经网络参数值
矩阵变压器已被证明是提高数据中心电源效率的有效方案。然而在高频下产生的寄生参数、交流电阻等将影响矩阵变压器的效率及工作性能。因此研究高频下矩阵变压器的寄生参数、损耗分布及集成化等具有重要意义。本文基于半桥串并联谐振变换器(LLC型),提出了一种高效率高功率密度的矩阵变压器的设计方法和具体实现方式,对矩阵变压器寄生参数、损耗以及磁集成等关键问题进行了分析。主要工作如下:(1)建立了矩阵变压器寄生参数
随着集成电路的不断发展与进步,反激准谐振变换器由于其成本低、体积小、功率密度高,可以实现开关管零电流关断(Zero Current Switching,ZCS)与准零电压导通(Quasi-Zero Voltage Switching,Quasi-ZVS)等优点,具有广阔的发展前景。而目前反激准谐振变换器存在控制模式单一等问题,限制了其全负载范围内平均效率的提升。针对上述问题,本文设计了一种高频反激
反激准谐振变换器安全性高,稳定性好,在手机适配器等中小功率电源领域拥有广泛的应用前景。反激准谐振变换器简化了拓扑结构,通过谐振实现谷底导通,提高开关频率。同时,采用同步整流技术可以降低整流二极管的功耗,提高整体效率。然而由于反激准谐振变换器的工作波形谐振变化导致难以有效找到采样控制点,这阻碍了同步整流技术在反激准谐振变换器上的应用。针对上述问题,本文设计了一种反激准谐振变换器的同步整流控制策略。首
可编程逻辑控制器(PLC)是一种被广泛应用于工业控制领域的嵌入式设备。它常被用于实现安全攸关系统的控制逻辑,例如核电、交通、医疗设备等。这些系统对软件的正确性、可靠性有着极高的要求。而目前PLC程序开发主要依赖于个人经验,需求描述错误、程序设计错误难以避免。SPS4PLC来源于规格说明模式语言SPS,是一个专用于描述PLC控制系统的规格说明模式语言,它能够以接近自然语言的方式精确描述PLC控制系统
多线程编程和异步事件处理的支持使得安卓应用的执行行为具有不确定性。若两个未经正确同步的事件对某一共享内存单元的访问可并发执行,且其中至少一个事件为写访问,则产生数据竞争。数据竞争是一种常见的并发缺陷,可导致安卓应用运行异常、崩溃、数据无效更新等严重后果。现有的安卓应用数据竞争探测技术一般采用动态或者静态探测方法,存在静态探测误报率高,动态探测代码覆盖率低、漏报率高等问题。为提高安卓应用数据竞争探测