基于大规模MIMO的无线通信专网下行链路关键技术研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:ericc0123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着5G技术日臻成熟,基于大规模MIMO的无线通信专网应用也就成为新的研究需求。5G专网的基站覆盖范围要求远大于普通商用5G蜂窝移动通信系统,工作在郊区、海岛、山区等应用场合,支持高移动性,因而信道的时延扩展较大,最大多普勒频偏也较大。本文针对5G专网的需求特点,研究确定适用于5G专网的大规模MIMO下行链路SDMA预编码及检测算法,并进行FPGA硬件实现形成IP核。本文首先进行大规模MIMO下行链路检测算法研究,对ZF、MMSE和LMMSEISDIC等检测算法进行公式推导、仿真实验、以及性能分析比较。在集中式大规模MIMO场景下,在LMMSE-ISDIC检测算法的基础上,提出一种新的迭代检测结构,即通过软入软出检测器、软入软出译码器和等效信道估计器等软信息的交互来改善系统整体性能。仿真结果表明,所提出的新的迭代检测算法性能优于原算法。论文其次研究基于大规模MIMO的无线通信专网下行链路SDMA预编码,对BD、GZI、GMI等用户预编码算法进行公式推导、仿真实验以及性能分析比较,结果表明,GZI最适宜用作大规模MIMO空分多址的无线通信专网基站侧下行SDMA预编码,满足无线通信专网系统设计技术指标要求。论文接着研究采用GZI预编码的空分多址大规模MU-MIMO无线通信专网系统下行链路检测算法,此时大规模MU-MIMO(32x32,16个用户)基站与单用户构成的等效信道矩阵维度为2x2。等效2x2 MIMO信道下,对MMSE-PIC与LDPC译码结合、SD与LDPC译码结合的两种迭代算法进行公式推导,给出了EVA信道场景下ZF、MMSE、MMSE-SIC、MMSE-PIC、SSD、SSDKB、ML等检测算法的仿真实验以及性能分析比较,结果表明在5G专网系统可以采用球译码算法来优化检测性能。论文最后采用Vivado HLS工具,选择KUC105 FPGA芯片开发大规模MIMO专网基站侧下行SDMA预编码及终端侧检测算法的IP核。首先给出了下行链路中所用的基本矩阵运算如矩阵相乘、矩阵QR分解、矩阵SVD分解和矩阵求逆等的IP核实现,然后根据基站侧下行SDMA预编码算法原理实现下行链路基站侧SDMA预编码算法IP核,给出了资源占用和Vivado HLS仿真结果;最后根据下行链路终端侧检测算法原理实现下行链路的终端侧检测算法IP核,给出了资源占用和Vivado HLS仿真结果。
其他文献
伴随着移动互联网和物联网的高速发展,移动通信技术的发展也在快速的更新。随着5G移动通信系统的正式商用,多输入多输出(MIMO,Multiple-Input Multiple-Output)技术是在保证功率效率的前提下,大幅提高频谱效率的关键技术。大规模分布式MIMO通过协作利用宏分集进一步提高传输性能,成为MIMO技术的热点问题。具体地,本文主要研究了:第一章首先介绍论文的研究背景。然后分别介绍了
5G系统将支持多种垂直行业应用场景,以及各类具有差异化服务质量需求的业务,其中,海量机器类型通信(m MTC)作为5G三大应用场景之一,是机器类型通信的新型行业应用,致力于保障大量互联设备的数据传输,以实现万物互联的愿景。5G系统需要满足远高于4G的性能要求,以支持爆炸性增长的数据流量、海量连接设备等。同时,丰富的业务类型和高流量密度、高设备连接密度也为网络负载的管理带来挑战。本文主要围绕业务流量
近几年,蓝牙技术的飞速发展催生了各种物联网应用的落地,其中基于蓝牙的室内定位技术以设备的体积小、易实现、普适性高等特点越来越受到广泛的关注。蓝牙室内定位技术大多通过测量接收信号强度指示(received signal strength indicator,RSSI)进行测距定位,但是RSSI的不稳定性等问题会影响定位的精度。本论文立足于基于蓝牙的RSSI测距定位技术,结合蓝牙最新发展趋势,设计并实
随着互联网技术的发展和智能手机的普及,各种手机应用极大地丰富了人们的生活。同时,人们对于移动网络流量的需求也呈现出爆发式的增长。为了满足人们日益增长的通信需求,移动运营商采用超密集网络,大规模MIMO等技术来提高系统容量,为用户提供更好的移动通信服务。然而,增加基站和天线等硬件设备提升网络容量的同时,也大幅增加了移动网络的整体能耗。所以,如何能够在满足用户需求的情况下,降低网络的能耗,成为人们关注
卫星通信在应急通信、地面蜂窝覆盖以外区域的通信及空中和远海通信方面具有无可替代的地位。与此同时,5G网络的出现和星地一体化架构的引入将在不久的将来极大地改变卫星通信的角色。更高速率和更高系统吞吐量的持续需求推动了高通量卫星的发展。其关键技术之一是多波束传输技术。通过采用点波束,能够大幅度提高天线增益,以支持小型卫星用户终端。同时不同点波束之间可以进行频率重用,提高了频带的利用率,并提高系统容量。但
随着移动通信技术的高速发展,面向高速率、低时延、大连接无线数据业务的第五代移动通信(The 5th Generation,5G)应运而生。然而,在信息速率快速提高、连接数量大幅上升的同时,通信设备的能量消耗也随之不断增加。因此,通信系统中的能效问题变得日益重要。鉴于此,本文分别从基站侧和终端侧两方面对高能效5G移动通信技术开展研究。在基站侧,本文通过设计基站波束成形方案,引入功率再利用机制,降低并
智能设备和高速率应用场景(例如在线游戏和高清视频)的快速增长对未来的无线通信提出了更高的速率需求。为了应对这种挑战,MIMO、波束赋形、移动边缘计算等技术被提出来解决用户的需求,人们也对具有广泛带宽的毫米波频段很感兴趣。同时,如何设计可靠且有效的资源分配算法来最大化系统容量,或是最小化系统总能耗将也成为更值得深入研究的问题。本文的主要内容归纳如下:1.考虑一个在工作于毫米波频段的切换波束MIMO-
VLC是一种通过调制可见光来传输数据的通信技术,由于其频谱资源丰富且无需授权、绿色节能、对人体无害、安全性高、成本低以及干扰小等优势引发了学界和产业界的密切关注。本文围绕MIMO-VLC系统中的空间调制,研究了以下四个问题:广义空间调制符号集的设计、广义迫零预编码的优化、联合预编码与均衡、成像与非成像接收机中速率匹配下的预编码与均衡的联合优化,具体工作如下:一、研究了MIMO-VLC系统中采用GS
无线自组网以其组网快速、扩展灵活、稳定抗毁等突出特点而得到研究领域和应用行业的广泛而积极地关注。现有的无线自组网应用系统在无线传输性能、组网节点规模、环境普适性能及网络移动应用等能力与性能上尚有诸多不足或欠缺,无法满足各种各类应用的多样需求。针对相关行业的具体应用目标要求,论文就研发具有传输速率高、延时小、支持节点移动的新型高性能无线自组网开展了相关具体技术研究、设计与实现开发工作。论文工作从实际
随着移动通信技术的发展,物联网等产业对移动通信终端的定位需要在不断提升,公共安全对位置信息的需求也逐步提高,面向移动通信技术的无线定位需求带来了新的研究热点。因此,本文主要研究面向移动通信终端的非盲DOA估计方法,深入研究了非盲DOA估计方法并进行改进,对基于第三方接收机的移动通信终端上行信号的非盲DOA估计算法进行了设计及改进,并重点针对LTE-A上行信号进行了算法验证及实现。本文的主要工作如下