舰船轴电流检测技术研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:rtreterter
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
舰船在海水中航行时,船壳会发生腐蚀,采用保护技术可减少腐蚀,但因腐蚀产生的电流会流经海水,传动轴等介质返回船体,构成完整回路。同时由于传动轴的转动,会激发出低频的电磁信号并传播到很远的距离,给舰船的隐身安全带来隐患。精确检测舰船传动轴电流,对研究舰船的非声隐身特性等具有重要意义。轴电流幅值范围大,具有复杂的交直流成分,检测环境复杂,且传动轴的尺寸大,现有传感器不能有效的解决这个问题。本文目的是研究并设计一个非侵入式轴电流传感系统,有效解决舰船轴电流的检测问题。本文首先通过ANSYS软件对轴电流产生的磁场进行分析,仿真研究了传动轴的尺寸、偏心等对磁场分布的影响,验证了非侵入式测量的可行性。然后根据轴电流动态范围,为解决小电流的检测问题,论文研究了自激振荡磁通门电流传感器的原理。在开环应用下,其具有较好的稳定性,很高的灵敏度和分辨率。在磁芯大直径条件下,激磁频率受到影响,检测带宽受到一定限制。本文对自激振荡磁通门电路进行了改进,提出一种优化方案,通过优化激磁回路,一定程度上提高了传感器的测量带宽。设计的检测系统可以实现直流及轴频10次谐波以内的电流检测,在低频80 Hz范围内达到了轴电流的动态范围±2 A和精度要求0.5%FS。为了检测更高次的谐波,研究了TMR电流传感原理,仿真分析了聚磁环气隙的磁场分布特征,设计了TMR轴电流检测系统。通过聚磁环聚磁,在两个对称气隙开口处放置TMR芯片,芯片输出通过两级差分放大及信号调理电路,消除共模干扰,间接检测轴电流大小。经实验测试,设计的TMR轴电流检测系统可以达到±2 A量程和1 k Hz带宽的设计要求。虽然直流漂移和噪声影响了小电流的测量精度,但在较大的量程范围内,精度指标可以达到应用需求。通过研究,将磁通门与TMR技术结合起来,可以有效提高轴电流检测系统的灵敏度、可靠性和带宽等问题,较好地解决轴电流非侵入式检测问题。对舰船安全运行和非声隐身有着重要使用价值和现实意义。
其他文献
激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,LIBS)是一种新兴的原子发射光谱技术,因其具有制样简单、快速、原位、远程和全元素分析等独特优点,已初步应用于环境监测、深海勘探、太空探索和生物医学等领域。但是,在实际应用场景中,样品表面的不平整会很大程度影响等离子体的稳定激发和光谱的有效采集,进而降低LIBS实验稳定性和定量准确度。因此,如何实现LIBS
学位
Fin FET器件自从在22 nm节点首次被商用之后,逐渐成为了CMOS的主流晶体管器件。然而,随着晶体管特征尺寸的不断缩小,在5 nm以及以下节点,Fin FET也开始面临设计限制以及沟道控制能力不足等挑战,先进的水平堆叠式纳米片环栅场效应晶体管(NS-GAAFET),成为了最有希望代替Fin FET结构的主流晶体管结构。与Fin FET器件相比,NS-GAAFET具有更大的有效宽度、更好的短沟
学位
忆阻器具有低功耗、速度快、集成密度高、存算一体性等优点,在非易失性存储器与神经突触器件方面具有广阔的应用前景。SrFeOx(SFO)材料通过调控氧的含量能够获得具有绝缘相的SrFeO2.5钙铁石结构(Brownmillerite,BM)和金属相的SrFeO3钙钛矿(Perovskite,PV)结构,两种结构可在外加电压的刺激下互相转化发生可逆的拓扑相变。基于SFO材料的忆阻器件具有阻变机理清晰可控
学位
忆阻器因其存算一体特性,可用于实现非易失逻辑、模拟计算和类脑计算等新计算范式,被视为后摩尔时代突破冯·诺依曼计算架构的基础器件。自整流忆阻器因其能够有效抑制阵列中漏径电流问题,实现高密度三维堆叠,而备受学界关注。近年来,已有工作探索了自整流忆阻器在模拟计算中的应用,然而,利用器件稳定二值阻变性能的非易失逻辑技术仍是空白。基于自整流忆阻器,发展高效的非易失逻辑方法,将为推动该类器件在存算一体领域的应
学位
胶体量子点(Colloidal Quantum Dots,CQDs)是具有宽带吸收、窄带发射且峰位连续可调等发光性质的的无机半导体纳米晶,丙二醇甲醚醋酸酯(Propylene Glycol Methyl Ether Acetate,PGMEA)是一种在工业上被广泛应用的绿色溶剂,在PGMEA溶剂中稳定分散且高效发光的量子点在光电器件领域有很大的应用潜力。然而高荧光量子产率(Photolumines
学位
类脑神经形态器件与脉冲神经网络是近年来的研究热点。本文研究基于石墨烯/氮化硼叠层二维材料的类铁电突触器件以及相应的神经网络。主要研究内容如下:制备石墨烯/氮化硼叠层二维材料晶体管,并系统研究不同二维材料沟道刻蚀工艺对刻蚀掩膜的影响和不同顶栅材料对氮化硼介质的影响。测试石墨烯/氮化硼叠层二维材料晶体管的类铁电性。使用半导体分析仪测试该叠层晶体管的转移特性曲线发现在正电压区域具有逆时针回滞特性。随后系
学位
物体的红外辐射特征是探测、识别、追踪的有效信号,对目标红外辐射的调控越来越成为军事反侦察领域的关注焦点;动态调节目标的红外辐射特性使目标与背景融合,是红外隐身技术的重要发展方向。本文聚焦于红外发射率可调材料研究,采用折射率可调谐的相变材料GST(Ge2Sb2Te5),构建GST/ZnS一维光子晶体结构,开展大气窗口单波段和双波段红外发射率可调薄膜研究。主要研究及结论如下:构建基于GST的一维光子晶
学位
传统计算机架构由于存储计算相分离而面临着显著的延时与功耗问题。相比之下,基于人工突触的神经形态系统有望通过借鉴人脑结构以实现高效信息处理。其中,联想学习作为描述动物学习能力的重要机制,其相应的电路设计对构建神经形态系统具有重要的意义。因此,迫切地需要设计与仿真简单通用且功能完善的联想学习电路。联想学习中以巴甫洛夫进行的一级与二级条件反射实验最为基础。然而目前许多使用忆阻器网络来实现巴甫洛夫联想学习
学位
随着Si基CMOS技术逐渐趋近其物理极限,Ⅲ-Ⅴ族化合物半导体材料由于较高的载流子迁移率而受到研究人员的青睐,采用GaAs替代Si衬底可以制备出低功耗、超高速的场效应晶体管,同时,选取k值较高的栅介质材料对于器件尺寸等比缩小、降低栅极漏电也十分关键。然而GaAs表面生成的自然氧化层以及与高k介质不佳的接触界面会严重损害器件性能,因此有必要对其进行一定处理来改善GaAs MOS器件的界面特性。本文的
学位
随着大数据时代的到来,爆炸式增长的数据对计算机的信息处理能力提出了越来越高的要求。由于频繁的数据搬运而无法突破延时和功耗的限制,传统的冯·诺依曼计算架构终将无法顺应时代的需求。因此,迫切地需要提出一种新型的计算架构以解决“存储墙”问题。以缩短数据搬移路径、减少延时和降低功耗为目标的近存计算和存内计算有望成为下一代计算架构的有力候选。忆阻器作为一种新型半导体存储器件,具有器件尺寸小、读写速度快、功耗
学位