论文部分内容阅读
介孔生物玻璃由于其较高的比表面积、多孔的空间结构和优良的生物兼容性、生物活性及降解性,在骨组织修复和药物载体的临床应用方面,处于研究领域和市场领域的领导地位。本文从生物材料需要满足的实际临床应用要求为出发点,围绕溶胶-凝胶法制备新型高比表面积介孔生物玻璃及其生物活性的调节方面展开研究内,为拓展介孔生物活性玻璃体系及深入研究骨组织修复工程打下基础。 溶胶-凝胶法制备生物材料,在实现介孔结构特性方面,具有显著优势。由于金属醇盐在溶液水解速率过快,溶胶凝胶制备介孔生物玻璃,主要局限在硅基材料,而磷基的生物玻璃在骨组织应用过程中又有无可替代的优势。本文使用有机金属盐通过溶胶凝胶方法,合成xCaO-(50-x)Al2O3-50P2O5体系的磷基生物玻璃。当x=5时,介孔生物玻璃的比表面积达到451.7 m2/g;当10≤x≤25时,比表面积在332.6 m2/g到125.7 m2/g之间波动;当x=30时,比表面积急剧下降到25.6 m2/g;当x>30时,材料明显析晶,已经不再是透明玻璃。通过XRD,FTIR分析了材料相组成和键合情况,确定材料的无定型玻璃结构。通过TG和DTA分析了材料在烧结过程中的物理化学变化过程和各组分材料结晶温度的变化,材料结晶温度都在700℃以上。还通过XPS分析了材料内部各元素周围化学环境的变化,指出Ca离子的引入破坏了AlO4四面体和PO4四面体在的玻璃网格结构,造成多孔孔道的坍塌。 用体外活性试验的方法测试了Ca元素的引入对生物活性的影响,发现在xCaO-(50-x)Al2O3-50P2O5体系中,当5≤x≤20时,生物活性随着Ca含量的增加而增大;当20≤x≤30时,生物活性随着Ca含量的增大而减小。分析这种趋势的原因是:一方面Ca元素的增加促进溶液离子溶出,从而使材料的生物活性增大;另一方面,Ca离子的引入破坏了原来的多孔结构,多孔结构的逐步降低,也降了材料的生物活性。在双重作用的影响下,当x=20时,生物玻璃的活性最大。