双酶法生产谷胱甘肽体系的构建

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:skang08
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
谷胱甘肽在人体内具有多种重要生理功能,在临床药品、保健品、美容等领域应用广泛。作为目前工业化生产谷胱甘肽的主要方法,微生物发酵法存在产量较低、下游工艺复杂、产物胞内抑制等问题。酶法生产谷胱甘肽转化效率高,有望实现谷胱甘肽的高浓度累积,但反应必需的供能物质ATP价格较高,且酶通常存在稳定性差和重复使用性差等限制。因此选择合适的谷胱甘肽合成酶体系、构建高效的ATP再生系统和引入恰当的双酶固定化方法是当下亟需解决的问题。本论文构建了一个经济、高效、稳定的双酶体系来催化合成谷胱甘肽,以双功能谷胱甘肽合成酶(Gsh F)合成谷胱甘肽,引入多聚磷酸激酶(PPK)来循环再生ATP,分别对Gsh F和PPK的表达条件、双酶催化工艺以及双酶固定化技术进行了研究。首先,构建了重组大肠杆菌表达系统,成功表达出具有酶活力的Gsh F和PPK,其次对两种酶的表达条件和酶学性质进行了优化和研究。最佳表达条件为:0.2 m M IPTG,20℃培养16 h,Gsh F酶活为1.68 U/m L,提高0.34倍,PPK酶活为114.06 U/m L,提高1.22倍。利用Ni-NTA亲和层析纯化后,Gsh F酶活达到11.67 U/m L,相比粗酶提高了6.48倍,同时热稳定性也得到提高。其次,对双酶催化体系中的各项参数条件进行优化和探究,更好的协调了谷胱甘肽的生产和ATP的循环,提高了双酶催化效率和谷胱甘肽产率。以低成本的六偏磷酸钠作为ATP再生的磷酸供体,ATP的添加量为反应所需的0.25%时即可驱动谷胱甘肽的连续合成,双酶催化体系最高可实现ATP再生248次。经过条件优化后,在添加120 m M半胱氨酸底物的基础上,GSH产量在3 h时可达到31.92 g/L,转化率为86.56%。最后,开发了一种基于微生物谷氨酰胺转氨酶(MTG酶)交联技术的双酶固定化方法。通过在Gsh F和PPK的N端融合肽链标签,为MTG酶提供了反应性残基和特定交联位点。此外,引入BSA作为保护蛋白参与到交联体系中,制备了具有高酶活保留的交联酶CLEs-BSA,并且交联酶的热稳定性、催化效率和操作稳定性明显好于游离酶。CLEs-BSA可稳定使用7次,在GSH合成体系中可以使底物转化率达到95.56%,重复利用5次后转化率仍有84.67%。
其他文献
酯类化合物是一类易溶于有机溶剂且在活细胞结构中具有重要作用的物质,在化学、食品和医药中应用广泛,故建立高效、绿色的酯类合成方法一直是研究的热点。以代谢工程为基础,利用微生物生产酯类化合物是一种新的合成途径,而筛选可高效表达的酰基连接酶及转移酶是构建该途径的关键。本论文以大肠杆菌为底盘,运用基于基因工程与发酵工程的联合优化策略,探究了不同来源的酰基连接酶及转移酶的适配表达机制,并结合全细胞催化及基因
学位
近年来随着数字经济的兴起,各种新型诈骗案件日益增多且诈骗手段花样繁多。由于缺乏社会经验加之使用网络,大学生群体已成为犯罪分子实施新型诈骗的主要对象之一。介绍数字经济时代新型诈骗出现的背景和形式,并调研分析大学生受骗的状况和特点,说明当前基于信息技术的网络反诈平台的应用情况。在此基础上,从增强内生性安全观念和实施外在性安全策略两个角度阐述通过教育管理、法律制度和信息技术等手段来增强大学生防范新型诈骗
期刊
核酸分子识别与检测对于肿瘤、病毒感染等疾病的预防、控制、诊断和治疗非常重要,目前已有的核酸检测技术多基于PCR扩增,由于其需要严格的温度梯度控制,在现实检测中常受到环境条件的限制。生物样本的基因组多为双链核酸,已有的核酸分子诊断手段要对双链核酸进行检测通常需要经过特殊的引物设计以及酶切消化等前处理步骤,基因组核酸片段被消化为单链寡核苷酸片段后才能进入检测体系被有效识别,这大大限制了核酸分子检测的效
学位
癌症即恶性肿瘤是威胁人类健康与生命的主要疾病之一。目前肿瘤临床诊疗面临的问题主要是不能在肿瘤发生早期对微小病灶做出精准诊断、有效治疗及预后,这都导致肿瘤患者的死亡率居高不下,因此,设计开发新型肿瘤诊疗药物成为肿瘤精准诊断及治疗的重中之重。近年来随着纳米技术的发展,纳米材料由于其在声、光、磁、热等方面独特的性质而在肿瘤诊疗领域有了越来越广泛的应用,尤其是集多种功能于一体的诊疗一体纳米探针,在肿瘤的早
学位
细菌感染是阻碍伤口愈合的主要因素,虽然临床上使用抗生素可以应对细菌感染。但是,滥用抗生素使得细菌耐受性和耐药性不断提高,甚至产生超级细菌,从而使细菌感染成为巨大的公共卫生风险。因此,探索对抗细菌感染的非抗生素替代策略变得尤为关键。纳米酶是指在相关生理条件下遵循酶动力学,能够催化酶底物转化为产物的纳米级人工模拟酶,由于易制备、低成本和高稳定性等特点而受到人们的广泛关注。基于此,本课题构建了一种具有良
学位
微生物电合成(Microbial electrosynthesis,MES)技术是一种绿色环保可持续的新型学科交叉前沿技术,其可以利用可再生电力为微生物提供还原力或调控胞内代谢,从而促进微生物细胞利用葡萄糖或最理想的CO2为底物合成目的代谢产物。目前MES系统中所用的宿主菌株大多缺乏高效的基因编辑手段,且生成的产物多为C3到C4以下,相对附加值较低。为了能够更高效地生产高附加值产物,本文中我们首先
学位
有机磷农药是使用最为广泛的农业杀虫剂,在保护植株保育的同时,农药残留污染也严重影响了生态环境和人类健康。同时,磷元素又是有机体必不可少的元素,磷资源的枯竭也成为亟需解决的问题。面对有机磷农药污染和磷资源日益枯竭等现状,建立高效快速的降解技术,在高效治理有机磷农药的污染的同时回收磷资源,已经成为当今研究热点。然而目前微量痕量有机磷农药仍然存在降解难度大,产生二次污染等问题,纳米酶材料在微量痕量污染物
学位
细菌感染会造成各种疾病,甚至导致死亡。目前首选的治疗手段是抗生素,但是不断增加的细菌耐药性、不良反应、药品资源的浪费等问题,给人类生命安全与健康带来新挑战。纳米药物递送体系是细菌感染治疗中的一种很有前途的策略。然而,传统药物递送体系通常伴随载药率低、制备工艺复杂以及生物安全性问题。为了克服这些问题,无载体纳米系统作为一种新的策略应运而生。目前,无载体纳米系统用于细菌感染治疗的研究还处于起步阶段。作
学位
多肽及蛋白等生物大分子药物具有副作用小、靶标特异性强等独特优势,在糖尿病、肿瘤等重大疾病的治疗中发挥着巨大作用。由于大分子药物在胃肠道部位不易被吸收并常常会被蛋白酶水解,该类药物的给药途径多以注射为主才能达到所需的剂量和药代动力学。然而,注射给药存在便利程度差、患者依从性低等明显不足。开发生物大分子药物的口服递送系统,可极大地提高其给药的便利性和依从性,也是当前生物大分子药物研发领域的热点方向。生
学位
木质素是地球上天然可再生芳香碳最丰富的来源,利用木质素生产燃料、高附加值芳香族化学品以及生物材料等,对缓解化石资源枯竭及温室效应等环境问题有着重要意义。木质素价值化的关键之一是开发新的催化反应工艺,将木质素裂解为酚类单体以转化为液体燃料,这些酚类单体也可直接应用于化学工艺链或合成为高值化学品。本论文制备了一系列以Y型分子筛为载体的负载型催化剂,在乙醇/异丙醇内源供氢体系中对木质素进行催化氢解反应,
学位