大型坳陷湖盆层序地层表征与岩性圈闭分布 ——以鄂尔多斯盆地陇东三叠系延长组为例

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:XUCHUNLIAN
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
陆相坳陷型湖盆具有稳定的物源区,沉积储层厚度薄、平面展布范围广,受湖平面升降作用控制明显、储层非均质性强、岩性圈闭成因和分布复杂等特征,这些特征影响了岩性油气藏的勘探开发。如何建立大型坳陷型湖盆层序地层格架,确定层序格架下沉积体系及砂体的空间分布规律,明确不同成因岩性圈闭空间分布规律,成为突破坳陷型盆地规模型岩性油气藏勘探开发的重要问题。本论文基于大量岩心、露头、测井资料以及前人研究成果,综合研究了鄂尔多斯盆地陇东地区延长组层序地层格架、砂体成因类型、砂体空间结构,以及层序地层格架下岩性油气藏成因类型和空间分布规律。将陇东地区延长组划分为五个长周期旋回建立了三种层序结构样式;提出了辫状河三角洲砂体4种垂向叠置样式和7种平面组合方式,通过对延长组已知岩性油气藏的精细解剖,确定了陇东地区延长组9种岩性圈闭成因类型。通过鄂尔多斯盆地陇东地区延长组堆砌样式及11个等时界面的识别,将延长组划分1个超长期旋回、5个长期旋回(三级层序)和17个中期旋回(四级层序)。长期旋回LSCⅠ以长10油层组为主,其中包含三个中周期旋回;LSCⅡ由长92、长91、长82油层组构成,包含三个中周期旋回;LSCⅢ由长81~长63油层组构成,包含三个中周期旋回;LSCⅣ由长62~长33油层组构成,包含三个中周期旋回;LSCⅤ由长32~长1油层组构成,包含五个中周期旋回。依据砂泥岩叠置样式、基准面旋回过程的控制因素和对称性特征,将长期基准面旋回划分为低水位基准面缓慢上升为主旋回结构(对应LSCⅠ-Ⅱ)、高水位基准面快速上升缓慢下降型旋回结构(对应LSCⅢ-Ⅳ)、高水位基准面缓慢下降为主旋回结构(对应LSCⅤ)。在中期旋回结构中,多发育基准面上升半旋回结构为主的非对称性旋回或近对称型旋回结构,而以基准面下降为主的半旋回结构不发育。短期基准面旋回类型可划分为向上“变深”非对称型旋回,向上“变浅”非对称型旋回,及对称型旋回这3类7种结构。陇东地区延长组主要发育西南方向供源形成的辫状河三角洲沉积、重力流盆底扇沉积以及湖泊沉积,构成了延长组最主要的储集砂体类型:辫状河三角洲前缘水下分流河道砂体、河口坝砂体、道-坝复合砂体、深水浊积扇砂岩。延长组具有复杂的砂泥岩组合样式和空间分布特征,具体为:砂包泥、泥岩嵌入式、砂泥岩交互式、泥包砂、砂岩指状式、纯泥岩段等6种组合样式。不同成因砂体在垂向上构成独立型、叠加型、切叠型和复合型4种叠置样式。将不同旋回过程中砂岩的平面接触关系划定义为7种类型:一体式(孤立式)、溢岸(天然堤)接触式、分流间湾接触式、对接式、侧切式、代替式、河口坝对接式。陇东地区延长组以岩性、构造岩性油气藏为主。其中岩性油气藏分为砂岩上倾尖灭、砂岩透镜体和(物性)非均质性遮挡3类,可进一步细分为砂岩上倾尖灭油藏,砂岩侧向上倾尖灭,河口坝砂岩透镜体油藏,浊积扇砂岩透镜体油藏,薄层河道砂岩物性透镜体油藏,厚层道-坝复合体砂岩物性透镜体油藏,替代式非均质(岩性)侧向遮挡油藏,侧切式非均质性侧向遮挡油藏,破坏性成岩作用物性封闭油藏,建设性成岩作用物性封闭油藏等10种油藏类型。因此,本次依据圈闭成因、砂体类型和空间分布特征等因素将岩性圈闭划分3类、6亚类、10种成因类型。坳陷型湖盆岩性圈闭的成因和空间分布不仅与长期旋回基准面的升降过程有关,还与沉积期古湖盆底形以及古地形导致的砂岩空间分布和垂向叠置样式关系密切。砂岩透镜体油藏主要为源内油藏,多分布于FS2,FS3,FS4湖泛面(优质烃源岩)附近三角洲前缘河口坝及深水浊积扇成因砂体中。砂岩上倾尖灭和(物性)非均质性遮挡油藏多为源外油藏,多以水下分流河道、道-坝复合砂体为主,广泛分布于陇东地区延长组各个层系内部。其中在低水位长期基准面缓慢上升体系域内,沿古湖盆坡折带形成依次上超的砂岩尖灭岩性圈闭。在低水位长期基准面缓慢下降体系域内,则与强烈进积的三角洲一起形成向盆内连续分布的顶部超覆砂岩上倾尖灭岩性圈闭。三角洲前缘水下分流河道、河口坝及道坝复合体岩性圈闭类型多样,以物性封闭和非均质性遮挡岩性圈闭为主。而在高水位基准面缓慢下降体系域及低水位基准面快速下降体系域内,在盆地深水区形成大量与烃源岩互层的重力流盆底扇砂岩透镜体岩性圈闭。综上所述,坳陷型湖盆岩性圈闭的成因具有复杂性,类型多样,空间分布具有差异性等特征。古地貌及湖盆底形特征决定了沉积物分散路径和样式,决定了规模型岩性圈闭的空间分布。基准面旋回过程控制了砂泥(储-源)岩时空配置,与沉积期古地貌的匹配控制了岩性圈闭的类型和空间分布规律。层序格架下砂体成因类型和结构特征调整了岩性圈闭成因、形态和空间分布。此外,源、储及油源断层的时空配置决定了岩性圈闭的有效性。
其他文献
渗透率作为储层品质和储层产能评价的重要参数,至今仍难以通过地球物理探测手段直接获取,通常需要依赖实验室测量的经验统计关系或基于理想微结构模型的解析或近似关系得到。不同岩石类型或不同储层性质常表现出微结构的巨大差异,这使得理想微结构模型得到的解析或近似关系难以适应这些实际储层,应用结果的可靠性分析也变得困难。随着数字岩心技术和高速计算机技术的出现,这类问题得到了一定的解决。数字岩心的渗透率可以用具有
蒸汽吞吐是稠油油藏开发的有效手段之一。但基于单管注饱和蒸汽的传统蒸汽吞吐开发方式受到热载体驱油效率低和蒸汽汽窜等因素的制约,采收率较低。近年来,常采用多元热流体或过热蒸汽等新式热载体来提高稠油水热裂解效率和储层渗透率;另一方面,采用同心双管等注汽方式对水平段井筒跟端和趾端进行交替注汽或同时注汽,以期提高稠油油藏的动用效率。本文以稠油油藏过热蒸汽吞吐为核心研究内容,开展以下四部分研究工作。首先,考虑
原油中有机硫化物类型丰富,结构多样,在分子层次上表征石油含硫化合物化学组成,有助于研究石油的地质成因,为石油加工过程中脱硫工艺及催化剂设计提供重要理论指导。本论文围绕原油中的含硫化合物,开发分离新方法;制定原油全馏程含硫化合物分子组成与结构表征的分析方案,鉴定新型含硫化合物,解释硫醚类化合物的成因机理。主要内容包括:基于对含硫化合物在硅胶和氧化铝表面的吸附机理的深入认识,建立了分离和富集石油中硫醚
报警系统是旨在引导操作者注意异常过程状态的一类系统。由于报警系统的不合理设计,在异常工况下,可能发生数以百计的过程报警甚至报警泛滥现象,严重干扰操作者对当前过程状态的判断,从而促成各种工业事故的发生。为此,采用先进的报警管理技术预报过程动态、辨识关联报警,能够全面改善报警系统表现,避免报警泛滥现象的不断发生。本文针对报警系统中存在的报警不及时、关联报警反复出现等问题,结合现有数据驱动方法存在的缺乏
地下管线作为现代城市的“生命线”,为人民生活提供了必要的物质保障,但由于管线资料的缺失遗漏,在城市建设、油田打桩等工程施工过程中常因挖掘破坏未知管线而造成经济损失。为避免此类事故,工程人员需要借助非挖掘探测方法对探测施工区域地下管线的有无进行判断。其中磁异常探测方法作为磁法勘探的一个分支,能够有效地应用在地下管线探测领域,对地下管线磁异常探测而言,其探测目标为地磁场作用下地下铁质管道产生的异常场,
地下管线是城市的“生命线”工程。地下管线探测可为城市地下挖掘工作提供可靠的管线位置信息,以避免施工中出现地下管线被挖断的事故。随着磁力仪灵敏度和精度的提高,磁法被用于地下管线等弱磁性目标体的探测。现代化城市的快速发展,导致地下可用空间越来越少。为了节约地下空间和方便管理规划,地下管线采用的多是近间距并行敷设方式。本文针对磁法在近间距并行地下管线探测中的理论和应用进行了全面研究,主要完成的工作有:将
低渗透油气藏已经成为我国提高油气产量、保障能源安全的重要开发方向。然而,由于存在储层物性差、孔喉细小、毛管力影响大、贾敏效应强等问题,导致常规水驱过程采收率低。表面活性剂驱是启动残余油的有效方式之一,其中乳状液的形成、稳定及其在地层内的运移可起到提高微观洗油效率和扩大宏观波及体积的作用。由于自乳化方法可在很低甚至无外加能量作用下增强原油乳化性能,并生成尺寸较小的乳状液液滴。因此,本文提出一种快速自
随着油气开发的水深不断增加,深海立管系统所受到的挑战也越来越严峻,需要适应并满足的运行工况也逐渐复杂。海洋立管的不同形态变化、内外流耦合受力环境及动态边界条件等复杂运行工况已备受世界工业及学术界关注。海洋立管由于结构形式的不同在海水中呈现的形态特征也不同,其轴向形态主要表现为曲率的变化,从而呈现高度的非线性特征;海洋立管在运营时会受到船体运动、海流、海床土壤、管道内流等因素的影响,受力情况复杂。这
丛式井可以有效地提高油田最终采收率并保证单井原油产量,磁定位钻井技术是丛式井精细控制技术之一,而邻井间距离的定位又是丛式井精细控制技术的核心。目前,我国尚未有自主研发、技术完善的丛式井磁定位技术应用于其邻井防碰测距领域,而国外已经研发出相应的测控仪器并应用于实际钻井工程。本文在深入分析现有邻井间距磁定位技术原理及其优缺点的基础上,围绕主动型丛式井磁定位钻井防碰探测技术展开研究,针对海上钻井平台和陆
油气开采和输送过程中通常会存在CO2腐蚀和微生物腐蚀,能够促使碳钢管线发生极严重的均匀腐蚀和局部腐蚀,对油气的安全生产产生巨大的威胁。国内外已分别对CO2腐蚀和微生物腐蚀做了大量研究,并建立了相应的防控措施。但对于流体冲刷环境下,CO2腐蚀的腐蚀机制,以及在CO2腐蚀和微生物腐蚀共同发生时的控制方式还尚不完善。因此,本文在CO2冲刷腐蚀环境下进行了研究,首先研究了冲刷腐蚀的腐蚀机制,然后讨论了缓蚀