高性能固态电解质材料及其性能研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:ctty1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
固态电解质替代有机液态电解质而发展起来的固态电池是一类新型储能电池,有望从本质上解决传统锂离子/钠离子电池中的安全性问题,同时提高电池能量密度。其中,无机氧化物固态电解质材料具有化学/电化学稳定性好、机械强度高、成本低、载流子唯一、对金属阳极稳定等诸多优点。但是,存在离子电导率低的难题;另外,无机氧化物固态电解质材料通常都需要烧结致密化,在高温烧结过程中,晶粒容易异常长大,探索烧结致密的纳米晶无机固态电解质材料极具挑战。针对这些关键问题,本论文围绕NASICON(钠超级离子导体)型钠离子无机氧化物固态电解质,主要开展了以下两方面的研究:(1)NASICON型钠离子固态电解质的组分设计及离子传输机理研究。基于Ga3+的八面体倾向性,设计NASICON型Na3+xZr2-xGaxSi2PO12(0≤x≤0.4)材料体系,研究固态电解质的组分设计与离子传导性能的构效关系,揭示固态电解质的离子传输机理。结果表明,Ga3+取代Zr4+的Na3.1Zr1.9Ga0.1Si2PO12表现出优异的离子电导率(25℃,1.06×10-3 S cm-1),比原始Na3Zr2Si2PO12的电导率高一个数量级,而且,Na3.1Zr1.9Ga0.1Si2PO12具有低的电子电导率(6.17×10-8 S cm-1)和宽的电化学稳定性窗口(5 V vs.Na/Na+)。晶体结构研究表明,Ga3+取代Zr4+可以拓宽钠离子传输通道的“瓶颈”尺寸,从而提升钠离子导电能力。(2)烧结致密的纳米晶NASICON型钠离子固态电解质研究。本论文提出了一种“锆—硅前驱体”的新方法,通过这种方法,发展了平均晶粒尺寸仅有~546 nm的烧结致密的Na3Zr2Si2PO12陶瓷电解质。纳米晶Na3Zr2Si2PO12不仅表现出极高的离子电导率(25℃,1.02×10-3 S cm-1),而且具有低的电解质/金属钠界面电阻(35Ωcm~2)。本论文的工作将加深对无机氧化物固态电解质材料的理解,基于晶体结构和离子传输路径,设计氧化物固态电解质的组分,从而提升其离子电导率;通过设计新的制备方法,即使氧化物固态电解质经历高温烧结致密化过程,仍有望获得纳米晶固态电解质材料,从而显著调控固态电解质的体相和界面特性。
其他文献
钌络合物从众多金属络合物中脱颖而出,被认为是最有可能取代铂的新型抗癌药物。钌络合物具有多种优良特性,不仅用于癌症治疗,还应用于细胞内探针和光敏剂研究。但大多数钌络合物的脂溶性差,细胞摄取率低,阻碍了其进一步发展。目前促进钌络合物细胞摄取的方法大多较为复杂,因此急需寻求一种简单有效的新方法。研究发现氯代酚可与钌络合物协同作用形成亲脂性离子对复合物,促进钌络合物的细胞摄取。临床常见的非甾体抗炎药氟芬那
学位
数字全息技术利用光电传感器记录数字化全息图,然后通过计算机对再现光衍射过程进行数值模拟,最终实现了记录物体的重建和再现。该技术具备成像光路简单、制作成本低、成像视野大、成像结果包含三维结构信息等优势,尤其是非接触性、无损性和定量性等特点,在细胞显微成像领域有广泛应用前景。但是数字全息的再现过程由数值重建和自动聚焦构成,涉及到大数据量、高复杂度运算,特别是自动聚焦过程需要重复多次重建和聚焦运算,因此
学位
压痕法作为测量材料力学性能参数的重要方法之一,在现代科学众多领域中的应用也越发广泛,由于接触过程中压头与薄层的接触区域情况复杂,其力学分析常涉及复杂的数学计算,目前尚缺乏相关问题的简洁解析解。本文对工程中常见的静止放置在刚性基底上的弹性薄层的圆柱形压痕双接触问题进行了研究,具体内容如下:1.在圆柱形压头下压弹性薄层的过程中,薄层下表面的一部分会与刚性基底失去接触,由于弹性薄层厚度远小于压头半径,H
学位
为提高肿瘤局部控制率,同时减少患者副反应发生率,分次放疗的摆位精度必须得到保障,而放疗前的图像引导技术可有效纠正该摆位误差。常规图像引导技术主要依靠X射线成像,如用锥形束CT(CBCT)来评估治疗位置的精确性。频繁的CBCT采集不但会加重病人治疗负担、延长治疗时间,而且还会增加额外辐射、诱发二次致癌。光学体表成像作为一种新型的引导摆位技术,具有零辐射、实时监测等优点。目前对于该技术的研究多处于临床
学位
随着人们对能源的需求日益增加,传统化石燃料大量消耗带来的环境问题不断加剧,开发可再生的清洁能源以替代化石能源已成为可持续发展的重要研究课题。电催化反应由于可应用于清洁能源存储及转换装置而受到研究人员的广泛关注。然而,电催化反应如氧还原(ORR)、氧析出(OER)和析氢(HER)反应的动力学过程都很缓慢,需要开发高效、低成本和高稳定性的电催化剂以加速反应的进行和提高能量效率。其中,过渡金属基材料因具
学位
变形描述是力学分析的基础,只有实现对变形应变场描述的完善,才能准确的研究物质材料属性。由于大变形的过程过于复杂,其中包含了大量的非线性,因此对其的正确描述十分重要。在小变形的理论框架中,当变形体的尺寸非常小时,通过考虑转动变形可以解决经典弹性理论不易解决的问题,这说明了在一些情况下对转动变形的考量是必不可少的,同时由于力偶的作用,应力张量是不对称的。但是当变形较为复杂时,由于小变形理论存在大量假设
学位
褶皱夹芯结构具有优异的力学性能,其尺寸的可设计性可以将其应用在各个领域。但特种纸的克重和浸胶量对其力学性能的影响研究较少,故本文从制备工艺、实验表征、有限元模拟方面研究了不同克重的特种纸和不同浸胶量对褶皱夹芯结构力学性能的影响,主要开展以下工作:(1)探索了真空吸附一次成型工艺,通过特种纸纸浆来直接制备V-型褶皱芯子,对芯子的几何尺寸进行了分析,发现因短切纤维在打浆过程中会产生细小的纤维碎片,在真
学位
在疲劳载荷和腐蚀环境等因素的影响下,对重大装备中材料早期损伤的无损检测和评估具有迫切需求。由于非线性超声检测技术对空间尺寸远小于超声波波长的材料微观结构特征有足够的表征灵敏度,对材料早期损伤的评估和检测具有特殊优势,近年来受到极大关注。超声非线性检测技术主要包括高次谐波技术、静态分量技术和混频检测技术等。其中,混频检测技术由于能够对局部损伤进行扫描定位和定量评估、具备较强的抗干扰能力等优点而引起广
学位
当今社会,流行性疾病的频繁发生和自然环境的日益破坏,促使了更多的人开始关注健康问题。随着信息化医疗技术高速发展,如何侦测与管控流行性疾病,建立全社会的智能健康管理系统,已成为国家疾病预防控制中心的重点研究方向。目前,大多的生理参数监测设备都是以医院或家庭为背景而设计的,存在检测对象单一,设备价格昂贵,缺少互联网接入,难以实现区域性检测等问题。鉴于此,本文旨在设计一种能辅助公共卫生机构应对流行性疾病
学位
Ti6Al4V合金由于机械性能好、电化学性质稳定被广泛地应用在航空航天、汽车、生物医学和海洋舰船等领域,在湿热盐环境下,Ti6Al4V合金在电化学作用下发生腐蚀,造成大量的资源浪费。氮化钛涂层具有良好的电化学稳定性和耐磨性能,被广泛地作为耐蚀和耐磨涂层,然而由于氮化钛柱状生长等自身结构缺陷,腐蚀离子会渗透到内部破坏其结构,目前改变氮化钛耐蚀性能的有效方法是添加中间金属层来抑制其柱状生长。因此,本文
学位