论文部分内容阅读
法拉第器件被广泛地应用在隔离器、磁光开关、调制器、环形器、旋光器、磁光存储器、磁光传感器等磁光器件上。磁旋光材料是法拉第器件中最为重要的一个部分,它要求拥有大的维尔德常数、良好的热导率、大尺寸以及低的散射损耗等特性。铽镓石榴石(Tb3 Ga5O12,TGG)和铽铝石榴石(Tb3Al5O12,TAG)因其拥有大的维尔德常数、良好的热导率以及低的散射损耗,使得它们成为在400-1100 nm(不包括470-500 nm)波段最受瞩目的磁旋光材料。但是TGG的原料之一氧化镓在1227℃即挥发,TAG具有不一致熔融的特性,使得通过单晶生长的方法很难得到大尺寸的以上两种优秀的磁旋光材料。透明陶瓷相较单晶具有制备周期短、成本低、易制得大尺寸及高掺杂等优势,可以通过日益发展的透明陶瓷技术来获得性能优异的TGG/TAG材料。 本论文通过固相反应和真空烧结的方法制备出高光学质量的TGG、TAG、Si∶TAG以及Tb3Ga2.5Al2.5O12透明陶瓷,并对材料的微观结构、光学性能和磁旋光性能进行表征,主要得到以下结论: 1.采用固相反应和真空烧结的方法制备出TGG透明陶瓷,通过实验找到TGG透明陶瓷的最佳烧结温度区间为1500℃~1600℃。当烧结温度为1550℃时,在500nm~1500nm处陶瓷样品的透过率达到72%。在室温下,波长为632nm测得TGG透明陶瓷的Verdet常数为-125.01 radT-1m-1,与报道的TGG单晶相近。并且探索了不同的制备工艺,实验结果表明先在空气中成相再在真空炉中用合适的温度烧结的方法难以得到透明性良好的TGG陶瓷。 2.制备了不同浓度Si4+离子掺杂(0-1.2at.%)的TAG透明陶瓷,并研究了其结构和磁旋光性能。在相同烧结条件下,Si4+离子的掺杂量为0.4-1.0at.%时,透过率最高,在可见和近红外光波段可达到77%;当掺杂量低于1.2at.%时,在室温下波长为632.8处的Si∶TAG的Verdet常数与TAG单晶相近,少量的Si4+掺杂对TAG的磁光性能影响不大。 3.采用固相反应和真空烧结的方法制备了Tb3Al2.5Ga2.5O12透明陶瓷,并与同等条件下制备的TGG和TAG透明陶瓷进行比较。其中Tb3Al2.5Ga2.5O12陶瓷在500-1100nm波段的透过率最高达到80%,接近理论透过率。在室温下632.8nm波长处测得TGG、Tb3Al2.5Ga2.5O12、和TAG陶瓷样品的Verdet常数分别为-125.01 radT-1m-1、-150.6 radT-1m-1和-172.1 radT-1m-1,样品的Verdet常数随着Al3+离子浓度的增加而增加。