吲哚亚砜化合物的绿色合成及其抗腐蚀性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ununszeto
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
亚砜是一类具有良好生物活性和重要应用价值的含硫化合物,广泛存在于大量天然产物、药物、配体和功能材料中,是有机化学合成中重要的结构单元,更重要的是,亚砜化合物在有机催化以及金属缓蚀领域开始进行应用。因此,亚砜化合物的合成方法及其在金属缓蚀领域的应用受到科研人员越来越多的关注。具体工作如下:亚砜化合物的合成方法研究。该反应以1H-吲哚与苯亚磺酰胺为原料,三氟乙酸为促进剂,水为溶剂,在温和的反应条件下即可反应,以最高98%的收率合成一系列含有不同官能团的亚砜化合物。对可能的反应机理进行推测,亚磺酰胺与吲哚进行亚磺酰化的反应途径是亲电取代反应过程。该方法用水做溶剂,不需要金属催化剂,反应条件温和、具有操作简便、绿色环保等优点。吲哚亚砜化合物的抗腐蚀性能研究。考虑到吲哚亚砜的良好吸附成膜特性,在铁基底制备了两种吲哚亚砜自组装膜,利用电化学法和表面分析法探究了自组装膜的疏水性及缓蚀作用。实验结果表明该自组装膜具有疏水性,是混合型缓蚀剂,主要抑制铁电极的阴极过程,以化学吸附和物理吸附的方式吸附在铁表面。在5 mmol/L 3-(对甲苯磺酰基)-1H-吲哚(PTSI)和3-((4-氟苯基)亚磺酰基)-1H-吲哚(FPSI)的乙醇溶液中组装9 h,在1 mol/L HCl溶液中缓蚀效率分别达到91.50%和94.24%。量子化学计算结果表明,吲哚亚砜缓蚀剂分子在铁金属表面上的活性吸附位点位于吲哚亚砜骨架和苯基,与Fe原子形成了反馈键和配位键。
其他文献
化学链技术能够提高能量利用效率、降低氮氧化物排放,具有独特的CO2内分离特性,是一种清洁高效的能源转化手段。Cu基载氧体和Fe基载氧体是化学链中常用的载氧体,Cu与Fe复合可以改善Fe基载氧体的反应活性,且能抑制Cu的烧结,具有良好的协同作用。DFT可以从分子层面描述载氧体自身的结构变化以及其与固体燃料之间的反应,对深入探究协同机理,设计更优的载氧体具有重要意义。本文建立了煤焦模型和氧化铁团簇模型
pH响应膜是一种对外界环境pH值变化具有刺激响应和自我调节功能的智能膜。当外界环境pH值发生变化时,具有pH响应功能的聚合物发生构象变化,通过改变膜的孔径大小,影响其渗透性能。pH响应膜可以适应不同环境,作出相应的性能改变,在药物控制释放、水处理和化学阈等多个领域受到广泛关注。本文通过原子转移自由基聚合(ATRP)的方法将具有pH响应性的单体甲基丙烯酸二甲氨乙酯(DMAEMA)接枝到聚偏氟乙烯(P
光催化产氨反应能够有效利用空气中充足的氮气,缓解传统合成方法导致的全球变暖等问题。催化剂表面受光激发产生的载流子激活N2分子中的N-N键,并与来自水的质子结合转化为NH3分子。BiOCl具有独特的层状结构、无毒、化学性质稳定等优势,但因光生载流子分离效率低、禁带宽度较大、光吸收程度较弱、比表面积较小等弱点限制了其在固氮领域的应用。针对这些问题,本文采取调控物相结构、表面形貌和构建异质结构的方式对B
随着各种玻璃陶瓷体系不断被研究完善,玻璃陶瓷已然成为当前最具发展潜力的陶瓷材料之一,白榴石玻璃陶瓷具有较高的机械强度、断裂韧性及生物相容性,通常被用于高性能义齿材料。但是,作为一种难加工的硬脆材料,该材料在磨削过程中通常会产生大量的表面和亚表面损伤,严重影响材料的性能。为了提高白榴石玻璃陶瓷的精密磨削加工质量,有必要对材料在磨削过程中的材料去除机理进行研究。首先,通过准静态条件下纳米压痕实验获取了
生物电极是实现生物组织与外部电气硬件信息交流的关键界面器件,其在人类大脑研究、生物电子医疗和神经义肢等科学研究领域起着至关重要作用。为匹配生物组织的拉伸特征,例如,人体肌肉具有40%的伸缩,要求电极具有一定的柔韧性和可伸缩性,使其在拉伸状态下具有低电阻变化率,避免因电阻变化巨大,形成低清晰度、不准确的电信号,甚至电极失效。然而,典型导电材料(金属、碳、导电聚合物等)的不可拉伸性,很难使电极在高拉伸
随着能源消耗和环境污染的加重,开发新型清洁能源成为当下的研究热点。电解水是解决能源和环境危机的一种很有前途的方法,该过程可以产生清洁的氢能源,且二氧化碳排放为零。但组成水分解的析氢反应和析氧反应均需要高效的催化剂驱动。金属有机骨架材料(MOFs)因具有稳定可调控的结构及较多的活性表面,在电催化方向具有较大的开发前景。基于ZIF-67开发的Co基电催化剂,在保留前驱体材料优势的基础上进一步提升了材料
在厌氧消化过程中,由产酸发酵菌群产生的丙酸、丁酸等有机挥发酸(VFAs),须由产氢产乙酸菌群将其转化为乙酸和H2后方能进一步被产甲烷菌群利用并最终被转化为甲烷,具有互营降解的显著特点。其中,丙酸是最易由产酸发酵菌群产生,却是最难被产氢产乙酸菌群进一步转化的VFA,被认为是影响厌氧消化效能和系统运行稳定性的重要因素。基于颗粒活性炭(GAC)可以通过构建微生物种间直接电子传递(DIET)途径促进VFA
受自然界生物马达的启发,研究出了许多人造微马达,这类微马达能够将周围介质中储存的化学能或其他形式的外部能量(如光)转化为自主驱动实现运动。目前人造微马达主要由有机高分子材料和无机硅材料以及贵金属材料制备而成,面临着生物相容性差等问题,并且现有的大部分化学驱动微马达需要不断补充过氧化氢燃料为马达提供能量,某些中间有毒副产物限制了微马达的广泛应用。因此亟待开发能实现多种生物酶有效分装及协同作用的具有良
石墨烯气凝胶是一种以石墨烯为主体,具有三维网络骨架结构的骨架材料。具有质轻、孔隙率高、比表面积大、导电性好、亲油疏水等优异的物理化学性能,在航空航天,电极材料,能源储存,环境保护等众多领域有着非常广泛的应用。然而,由于石墨烯片层间存在π-π键及范德华力,导致石墨烯纳米片层之间极易发生团聚与堆叠,且随着材料多孔性的提高,结构的机械性能难以避免随之降低。故在构筑石墨烯气凝胶三维网状结构的同时,如何保证
SiCp/Al复合材料以其优异的性能逐渐应用于航空工业。但由于尺寸的限制,超大型零件必须采用锻造工艺才能实现热加工。因此,研究分析颗粒增强铝基复合材料锻造工艺,能够为实际的SiCp/Al复合材料锻造提供理论支撑和技术指导。本文以粉末冶金态15vol%SiCp/2009Al复合材料为原始试样,在热模拟实验机上进行了热压缩实验,分析并构了复合材料的热变形本构方程和热加工图。采用得出的最佳变形参数对Ф1