玻璃纤维束的力学性能及玻璃纤维编织网增强混凝土的粘结性能研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:lxp3754
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
玻璃纤维编织网增强混凝土(Glass Textile Reinforced Concrete,简称GTRC)是一种新型建筑材料,其具有高承载力、抗裂性能好、耐腐蚀等优点。研究玻璃纤维编织网与基体之间的粘结性能是应用玻璃纤维编织网增强混凝土的前提条件。而在将玻璃纤维编织网应用到混凝土基体前,首先应先测试玻璃纤维网的基本力学性能。为此,本文进行了如下几方面的研究:利用MTS万能试验机对五种常见的玻璃纤维束进行了准静态拉伸测试。利用Instron Ceast 9340落锤系统对五种玻璃纤维束进行动态冲击试验。利用Weibull分布模型对试验数据进行统计分析,量化了玻璃纤维强度的离散性。从结果可以看出:每种玻璃纤维束表现出其不同的力学性能应变率相关性。静载下有涂覆层定型而成的玻璃纤维束其破坏模式是分步破坏的,动载下玻璃纤维束又呈现随应变率不同的破坏形态,这与其纤维的力学性能差异有关,且表明玻璃纤维束的破坏形态与应变率有关。同时,采用Weibull分布拟合玻璃纤维束拉伸强度的相关系数r值均大于0.95,说明Weibull分布能很好的预测应变率条件下玻璃纤维束的分布规律。对玻璃纤维编织网增强混凝土的基体进行TRC基体流动性能的测试,采用了自密实混凝土的坍落度、坍落流动度以及坍落流动时间T50对TRC基体流动性能力进行了检测。在试验基础上,调整水胶比和减水剂的含量,配制出C1、C2、C3三种配合比不同的混凝土基体,而后对三种基体进行了工作性能和力学性能的试验和分析。结合混凝土基体的工作性能及强度,选出具有良好工作性能和力学性能的TRC基体。试验结果表明:C3基体的流动性能好且强度较高,其工作性能比C1基体和C2基体好,且强度也满足TRC基体的要求,即采用混凝土C3配合比的基体能满足TRC的基体要求。利用MTS万能试验机对两种涂覆层玻璃纤维束的埋深深度(10mm、15mm、20mm)、混凝土强度和工作性能以及纤维网表面浸渍环氧树脂后粘砂处理三种情况下进行拔出试验测试,研究两种玻璃纤维束与TRC基体的粘结性能影响。试验结果表明:随埋深的增大,拔出刚度呈整体上升的趋势,且拔出刚度始终为正值;在10-20mm的埋深深度内最大拔拉力随着纤维束的埋深增加而增大;等效粘结强度其随着埋深的增大而减小;拔出功随着埋深增加而增大,且在埋深20mm时的增加幅度最大。混凝土的强度和工作性能均能影响纤维编织网与混凝土基体的粘结性能,提高混凝土基体的强度以及改善基体的工作性能均能提高混凝土基体与纤维编织网的粘结能力。且改善混凝土基体的工作性能更能提高纤维编织网与基体的粘结性能。纤维编织网涂覆环氧树脂粘砂处理后能提高其二者的粘结性能,且增强效果很明显。
其他文献
合成孔径雷达图像目标检测在SAR图像解译中占有重要地位,随着SAR成像技术的更新发展,目标检测技术成为战场环境侦察、地球科学遥感等领域中的重要研究方向。SAR数据采集能力
近年来,无线通信技术和半导体技术的飞速发展,使得各种小型化低成本的无线通信设备慢慢融入并逐渐改变着我们的生活。在无线通信网络中,射频收发机作为该系统接收和发射信息
随着裸眼3D(Three-dimensional)显示技术的发展,裸眼3D显示成为技术研发的主流。裸眼3D能够更真实地描绘真实世界,更好地描绘真实与合成的场景。定向时分背光显示技术基于柱
研究目的:本文试图建立大鼠运动性疲劳模型,研究运动性疲劳对大鼠大脑皮质主运动区神经元超微结构的影响,并通过几种相关基因的表达情况,以期探寻运动性疲劳引发的超微结构的
离子液体是全部由阴离子和阳离子组成的盐,在100℃以下呈液体或熔融状态,因此也被称作低温熔融盐。它有良好的热稳定性和导电性以及酸性或超强酸性,这使它不仅可以作为溶剂使
自从2002年人们第一次在半导体芯片上成功制作了光栅耦合器后,光栅耦合器得到了人们广泛的研究,不过这些研究大多工艺复杂、成本较高。一种成熟、廉价、高效、可靠的光栅耦合
近年来,铼及其化合物因在化学催化方面的优异性能而受到广泛研究,但它们所参与的化学反应多为非均相催化反应,需要高温或高压等尖刻的反应条件,并且催化产率与选择性较低,这
双面无缝针织机编织的半成形鞋面织物,具有优异的耐磨透气性、轻便柔软性等特点,其生产效率高成本较低,因此受到消费者和制造商的喜爱。但是目前对这一半成形鞋面织物的性能
天然气分公司现有油气矿场加工装置28套,这些装置的运行状况及参考资料大多依据08年以前装置的标定报告(有些整体改造或新建的装置甚至从未标定过),近年来,由于原料组分、机
随着油田的持续开发,我国大部分油田已经进入高含水开发期,采出液综合含水率已经达到或者超过95%,这给地面处理工艺带来越来越大的压力。井下油水分离技术能够将高含水产出液