高功率密度SOI-LIGBT的空间辐照效应研究与加固设计

来源 :东南大学 | 被引量 : 0次 | 上传用户:szhg5583
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
绝缘体上硅横向绝缘栅双极型晶体管(SOI-LIGBT)是单片智能功率芯片中的最核心元件,采用SOI衬底可以有效提升器件的抗空间辐照能力,受到了学术界及产业界的高度关注。为了提高SOI-LIGBT器件在辐射环境中的稳定性与可靠性,研究SOI-LIGBT器件的空间辐照效应具有重要意义。本文通过仿真与实验,揭示了SOI-LIGBT抗总剂量辐照和抗单粒子辐照的损伤机理,并通过改进器件结构,优化了器件的抗辐照可靠性与高功率密度之间的折中关系,研制具有高功率密度的抗辐照SOI-LIGBT器件。本文首先通过TCAD仿真研究了SOI-LIGBT器件的单粒子辐照效应,分析了不同辐照条件对器件电学性能的影响以及其在单粒子辐照下的失效机理。研究发现栅极下方沟道区域是器件在单粒子辐照下的敏感区域,且单粒子瞬态电流的脉冲峰值与宽度会随着线性能量传输与集电极电压的增大而增大。由于寄生双极性晶体管的存在,单粒子辐照导致器件闩锁而失效。针对单粒子失效机理,通过减薄顶层硅厚度和改变P型体区结深对器件进行加固设计,最终仿真设计出的SOI-LIGBT器件具有200V(@37Me V?cm~2/mg)的抗单粒子辐照安全工作电压,达到设计指标要求。进一步,本文还结合实验与仿真对600V SOI-LIGBT抗总剂量辐照特性进行了详细研究,揭示了总剂量辐照对器件电学特性及载流子输运的影响。研究发现,在总剂量辐照下,栅氧中积累正电荷,使器件阈值负漂,相同栅压下输出电流随辐照剂量的增长呈上升趋势。同时,在总剂量辐照过程中施加正栅压会加剧阈值电压的退化。在相同过驱动电压下,VCE较小时,集电极电流随着辐照总剂量的增大而增大;VCE较大时,集电极电流随着辐照总剂量的增大而减少。通过优化栅氧生长工艺可以有效抑制总剂量辐照过程中阈值电压的退化。
其他文献
黑磷,庞大的二维材料家族中的一员,最近在光电子领域引起了人们广泛的关注,原因是其各向异性的光电特性,超高载流子迁移率,以及厚度可调的直接带隙(单层1.5e V到厚层0.3 e V)。优异的特性使得它在未来的光电子器件领域中极具应用潜力,尤其是红外光探测。到目前为止,人们已经报道了诸多基于黑磷的光电探测器,充分证明了它在下一代光电探测器中的应用前景。然而,目前基于黑磷的光电探测器存在以下两个问题:(
近些年,卷积神经网络已经被广泛地应用到图像识别、语音识别等领域。但是卷积神经网络算法具备计算密集和存储密集两大特性,使得传统的移动终端设备在部署算法时计算实时性和功耗等方面无法满足特定要求。同时在移动终端设备中,处理器的设计成本占总成本的比例往往较高。因此,研究以开源处理器为核心、具备卷积神经网络硬件加速器的片上系统有着重要的实用意义。本文首先详细地分析了卷积神经网络算法的运算过程及其计算并行性特
随着互联网时代浪潮的到来,人机交互不再局限于传统的WIMP交互模式,多种新型交互方式的应用逐渐走进人们的日常生活。眼控交互作为其中一种具有自然交互特性,且贴合人们日常生活与操作习惯的交互方式,正在逐渐拓宽受众群体,为越来越多群众服务。眼控交互领域很具有开拓性,且发展前景广阔。本课题通过分析国内外眼控系统的特征与优缺点,整理了眼控系统的应用场景,并总结分析得出眼控系统的相应设计原则。将平滑追踪的生理
学位
随着智能化设备的研究和普及,用户对于个性化的图标设计需求日益增加,市场也对图标设计的快速迭代提出了更高的要求。国内外为此进行了大量的研究,在新一波人工智能浪潮的推动下,深度学习技术为智能化图标设计的研究提供了新的可能性。本文提出一种基于深度学习的图标智能化设计方法,旨在利用深度学习技术把个性化图标设计需求引入到计算机生成图标的过程中,该方法能够在短时间内自动生成大量具有指定风格特征的图标设计方案。
肢体瘫痪是一个会对人们的身心健康和生活质量造成极大负面影响的残障疾病,越来越多的科研人员和医护人员将精力放在康复和治疗瘫痪疾病的事业上,因此,结合电子学和生物学等多学科的知识和技术来解决这一难题有着极其重要的意义。本课题组率先创新性的提出了“微电子神经桥”和“微电子肌电桥”的治疗方法来帮助瘫痪患者实现运动功能重建的目的。该方法的原理是通过电子仪器来获取健康侧肢体的运动信号(神经电信号或肌肉电信号)
面对现代网络环境中庞大的数据量以及爆炸增长的网络流量,人们对网络接口卡(Network Interface Card,NIC)的数据传输链路总带宽及传输延迟都提出了更高的要求。为了进一步提高数据传输性能,本文采用CXL(Compute Express Link)作为数据总线,完成了基于CXL的高速网卡中DMA(Direct Memory Access)的设计。通过减少传输链路延迟和降低中央处理器(
磁性薄膜是自旋电子学器件的重要组成部分,它的性质很大程度上决定着相关器件的性能。磁性薄膜材料的磁矩进动的弛豫快慢,与薄膜的磁动力阻尼因子大小紧密相关,它决定了磁性存储和自旋电子器件的开关时间。自旋泵浦效应是一种有效调控磁性薄膜中磁阻尼因子,而不破坏优良磁性的方法。在过去的研究中,已有很多理论和实验表明铁磁/非磁(FM/NM)界面可以调控铁磁层的磁阻尼因子。本论文主要以过渡磁性合金-坡莫合金(Ni8
学位
二维过渡金属硫族化合物(TMDCs)层状材料具有优异的光学、电学和机械性能,可作为新型光电子器件的理想材料,在器件尺寸微型化、量子信息科学和光电子等领域发挥着至关重要的作用。然而,基于TMDCs电子和光电子器件的制备不可避免地要在金属-半导体界面处形成肖特基接触,本征的TMDCs与金属之间过高的肖特基势垒严重限制了器件的性能,如低载流子迁移率、与金属间的高接触电阻等。随着现代电子技术的快速发展,其