Ds+→KS~0KS~0π+衰变过程的研究和α0(1710)的首次发现

来源 :山西师范大学 | 被引量 : 0次 | 上传用户:yu8886882
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ds介子作为拥有c夸克和s夸克的含粲介子,对卡比博-小林-益川矩阵(CKM矩阵)的研究颇有意义。在Ds的众多衰变过程中,Cabibbo允许的Ds+→KS0KS0π+过程凭借着较大的分支比和低本底特性,使其成为研究Ds介子的重要衰变道。通过对该过程的振幅分析研究,不仅可以加深对Ds介子的理解,也可以更进一步的掌握此过程中可能存在的中间共振态如K*(892)+、a0(980)、f0(980)、f0(1710)等粒子的性质。本文利用BESIII在2013-2017年间收集的积分亮度为6.32fb-1的4.178到4.226 GeV的数据,使用双标记方法收集到了信号占比约为97%的412个Ds+→KS0KS0π+衰变事例。并且,本文首次对该过程进行了振幅分析。分析表明,Ds+→KS0KS0π+衰变中主要的中间过程为Ds+→K*(892)+KS0,其比份为(43.5±3.9±0.5)%。同时,结合本过程和BESIII已经发表的Ds+→K+K-π+的振幅分析结果,本文观察到f0(1710)的同位旋为1的伙伴a0(1710)粒子,并确定此过程中a0(1710)和f0(1710)的混合态S(1710)的比份为(46.3±4.0±1.2)%,且 S(1710)的质量和宽度分别为(1.723±0.011±0.002)GeV/c2 和(0.140±0.014±0.004)GeV/c2。a0(1710)粒子的发现,进一步证明了f0(1710)为K*K*分子态而非胶球,为确定基态标量介子f0(980)的结构提供了新的实验依据。本文利用振幅分析结果产生的蒙特卡洛样本,精确估计了 Ds+→KS0KS0π+探测效率,并对其衰变的绝对分支比进行了测量,结果为B(Ds+→KS0KS0π+)=(0.68±0.04±0.01)%。同时结合振幅分析和分支比测量结果得到了各个中间过程的绝对分支比,结果分别为B(Ds+→K*(892)+KS0,K*(892)+→KS0π+)=(3.0±0.3±0.1)%,B(Ds+→5(1710)π+,S(1710)→KS0KS0)=(3.1±0.3±0.1)%。
其他文献
发票是发生在市场经济交易的双方开具或取得的一种具有多种功能的商事凭据,我国为有效管控税源,凭借发票这一媒介工具,对税收进行管理。多年来,发票管理税收的模式在我国税收领域发挥了巨大作用,同时也带来了相应的问题,出现了不少弊端,比如增值税发票虚开和增值税发票伪造犯罪不断增多,偷税漏税案件频发,不仅使国家税款严重流失,税收秩序遭到破坏,同时也侵害了合法经营纳税主体的权益。在“营改增”进程的推进和国地税合
学位
铁磁/反铁磁交换偏置体系是当前各种磁电子学器件的基本组成部分,研究该体系的磁化反转性质即体系磁滞回线的具体特征对于优化电子器件的性能具有重要的作用。虽然前人的一些工作讨论了铁磁/反铁磁体系磁滞回线的类型,得出了回线类型的相图,并且发现磁滞回线的类型除了与外磁场的取向有关之外,也与体系内部各向异性的竞争效果有关,但他们的工作只讨论了外磁场垂直于交换各向异性易轴时磁滞回线的分类,并没有讨论其他构型如:
学位
近年来,中高能重离子碰撞的弹核碎裂研究成为核物理学的重要研究课题,国内外对中高能重离子核碎裂反应开展了广泛的研究,为宇宙射线的传播和辐射防护以及重离子治疗肿瘤等方面提供了科学依据。目前实验上核碎裂的研究主要集中在入射粒子总反应截面以及弹核碎片分反应截面的测量,对弹核碎裂的角分布、横动量分布、温度等研究较少。本工作利用CR-39固体径迹探测器对700 AMeV 28Si束流与CH2靶核反应弹核碎裂的
学位
闪电是自然界中一种强烈的放电现象。闪电发生时通常会产生强电流和强电磁辐射,同时伴随着强烈的发光、发热和发声。闪电通道温度可达三万度,能将通道内的空气变为等离子体态,形成以氮、氧离子和原子为主的等离子体通道。对闪电进行光谱观测能够有效的反映通道内部等离子体的物理特征。但是由于闪电的发生具有随机性、瞬时性等特点,对它进行主动的光谱测量是比较困难的。在实验室中,激光可以用来击穿空气,使其变为等离子体态,
学位
单分子层三碘化铬(CrI3)是一种具有本征磁性的二维半导体材料,在低维磁性器件上有很大的应用价值。我们基于密度泛函(DFT)理论的第一性原理研究了单层CrI3本征点缺陷的带电性能,包括结构、热力学稳定性、电子性质及磁性质等。首先,我们通过评估Cr的化学价态,搭建了具有1+、1-和0三种不同电荷态的缺陷结构。计算了具有不同晶胞尺寸的本征缺陷单铬空位VCr,单碘空位VI,双铬空位VCr2,双碘空位VI
学位
近年来,高次谐波的产生作为一种极端的非线性效应逐渐被人所熟知,相关的研究如火如荼,方兴未艾。强激光作用于气体介质上时,非线性效应随之发生,随后,上百阶的高能谐波光子辐射而出。作为一种相干的宽谱高能光源,它可以用来产生阿秒脉冲(10-18s),它也可以在百电子伏附近及以下的波段部分代替同步辐射光源,甚至在一定程度上优于同步辐射光源。随着研究的深入,气体介质密度低,较难被电离,稳定性差等缺点逐渐暴露,
学位
化石燃料的燃烧所造成的日益严峻的能源危机和环境污染迫使人们去寻求一种绿色清洁的新能源。虽然太阳能、风能、潮汐能的开发和利用极大的改善了这一现状,但由于受季节和地域等因素的影响,这些能源的利用仍然受到了一定的限制。于是氢能作为一种能量密度高、燃烧产物无污染的清洁能源逐渐走进了人们的视野。传统的制氢方式包括甲烷重整、煤炭气化等仍无法做到真正的零碳排放。幸运的是,通过电解水的方式来制备氢气可以完美的解决
学位
核碎裂在空间辐射防护和重离子治疗中都是一种重要现象,并且近些年来针对中高能核碎裂的研究为核半径的测量提供了重要参数,因此对其的研究具有重要意义。而Si粒子作为银河宇宙射线(GCR:Galatic Cosmic Rays)粒子中一种引起生物学效应的主要成分,以及医学肿瘤治疗中一种能针对抗辐射性很强的肿瘤的重离子,关于其与复合靶发生作用弹核碎裂反应的研究,在不同能区的实验数据有待进一步完善。本实验主要
学位
地球是人类赖以生存的家园,人们在对太空不断的探索中,越来越关注空间天气的变化,发现太阳的爆发活动是造成空间天气变化的主要原因,其中日冕物质抛射(Coronal Mass Ejection,CME)是最剧烈的太阳爆发活动,表现为从太阳日冕中抛射出大量的等离子体物质,传播到行星际空间扰乱近地环境的磁场,可以引起地磁暴,破坏通信系统,影响航天航空以及人类的生产生活。因此,准确预测CME到达地球的时间是太
学位
近年来,原子、分子产生的高次谐波在阿秒脉冲的产生、超快电子动力学追踪、分子轨道和结构成像等方面取得了成功的应用。然而,由于气体靶中原子和分子密度低,气体谐波的转换效率很低,限制了许多潜在的实验应用。为了打破这一瓶颈,人们开始关注固体谐波的产生。本文基于双色周期势的高次谐波产生,主要研究内容包括以下两个方面:(1)研究了由双色周期势产生的谐波最小值的电子动力学。结果表明,在双色场的驱动下,谐波谱的第
学位