软X射线自种子自由电子激光设计与新原理研究

来源 :中国科学院大学 | 被引量 : 0次 | 上传用户:lizhigang3637
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来高增益自由电子激光(FEL)的主要发展方向是产生高功率、超短脉冲、高重复频率、全相干的X射线,使得FEL能够在生命、材料、化学、医药、能源、环境等领域能够得到更广泛的应用。自放大自发辐射(SASE)是现有的FEL装置中最常见的运行模式,已经能够稳定的产生高功率、短波长、横向相干的辐射脉冲,但SASE起源于电子噪声,这导致SASE辐射脉冲的纵向相干性较差、辐射脉冲能量抖动较大。为了改善SASE FEL纵向相干性,一系列新型的FEL运行模式被提出,其中外种子谐波放大模式受到了人们广泛的关注,但是受制于谐波转换次数,这些模式目前只能产生波长在4nm以上的相干辐射。自种子(Self-seeding)FEL模式的提出为全相干X射线FEL的产生提供了可行的技术路线,目前已经实验验证了该方案的可行性,但软X射线self-seeding实验结果表明,该运行模式还存在着波长覆盖范围窄和光谱边带较大等一系列问题。我国即将建设的上海硬X射线FEL装置(SHINE)将软X射线self-seeding模式作为基本的运行模式,用于产生覆盖X射线波段的全相干FEL。本论文基于在建的软X射线装置(SXFEL)和SHINE装置进行了软X射线self-seeding物理和设计研究,并提出了一系列新型的运行机制,以解决目前软X射线self-seeding中存在的问题。
  在新原理研究方面,为解决软X射线self-seeding方案目前存在的问题,本论文提出了一系列创新的运行机制:通过采用反taper波荡器在电子束中产生一个谐波微聚束(bunching)信号,然后通过谐波辐射的方法,来覆盖软X射线和硬X射线self-seeding方案之间的辐射光子能量GAP,通过模拟结果显示,我们所提出的方案能够很好的覆盖该光子能量GAP;通过理论推导和模拟验证了软X射线self-seeding方案中的边带的产生原因。为了解决边带问题,我们提出在波荡器之前加入相位混合器,通过消除电子束中的边带bunching信号,来消除软X射线self-seeding方案中的辐射光谱边带问题。通过建立单频调制、多频调制、start to end三个模型进行模拟,验证了边带产生的原因,并且证实了我们所提出的方法能有效的消除软X射线self-seeding方案中的边带问题;通过将常规self-seeding单色器中的狭缝替换为双遮光板的方式产生多色的尾波信号,作为self-seeding方案中辐射段的种子激光,该种子激光与电子束在第二级波荡器中相互作用下放大最终达到饱和,从而产生多色的FEL辐射脉冲。我们通过纵向傅里叶变换和波动光学传输的方法模拟了尾波产生的过程,辐射过程模拟验证了我们所提出方案的可行性。通过我们提出创新型的运行机制,有望实现大范围可调、纵向结构可控的全相干X射线光源。
  在物理设计方面,本论文根据SXFEL装置和SHINE装置的需求,给出了整体的方案设计。通过对软X射线self-seeding方案模拟,得出了self-seeding方案的FEL输出结果,并根据模拟结果给出了波荡器的整体布局。基于SHINE电子束参数进行物理模拟,得出不同光子能量下的辐射特性,并对相关的光学和物理参数进行了优化,提出了对光栅单色器系统的设计要求。在光学设计方面,基于SHINE装置给出了光路整体设计。根据光学系统要求,进行了磁压缩段(chicane)系统设计。同时通过对光路特性进行了系统的分析,给出了光学元件参数和光学系统特性。本论文通过物理和光学的模拟与分析,给出了一套完整的物理和光学设计。本设计是我国首个软X射线self-seeding系统设计,该系统可以实现0.4-1.5keV大光子能量范围的覆盖,可以同时满足SXFEL装置和SHINE装置的需求,并考虑了SHINE装置高重频下的设计要求。
其他文献
本论文结合加速器上束流流强测量技术的原理和基础,根据最新的磁阻型传感器的发展成果,通过对各关键部件性能的研究和探讨,研制了一套新型的基于磁阻器件TMR的流强探测器。在整个系统的研制过程中,对流强探测器研制的各个方面进行了讨论,为今后束流流强探测器的研制打下良好的基础。  第一章中,介绍了束流流强测量的理论基础,国内外束流流强探测器的研究成果和现状,以及本课题的创新点和意义。  第二章中,探讨了束流
即将开建的高能光源是各项设计指标均力求世界一流水平的衍射极限环光源,具有超低发射度,追求超高的束流轨道稳定性。储存环上的BPM测量系统在实现束流轨道稳定性中发挥着极其重要的作用。本论文即以BPM测量系统为核心,将BPM系统相关的、包括束流在内的所有相关因子进行统一考虑,对高能光源实现束流轨道稳定性进行一系列的工作。  储存环束流动力学是研究束流轨道稳定性的基础,BPM测量束流位置的工作原理有助于对
高能同步辐射光源验证装置(HEPS-TF)是“十二五”期间对高能同步辐射光源核心关键技术的预制研究。高能同步辐射光源将达到衍射极限光源的水平实验,具有高能量、极低发射度等特点。极低的发射度对磁铁定位精度提出了极高的要求。基于束流准直的高精度自动控制支架将是解决这一难题的可行方案。由于其结构便于带束远控调节,更容易受到地面微震等外界干扰的影响。本论文主要围绕HEPS-TF磁铁支架的稳定性开展一系列研
射频超导技术是大型加速器装置的核心技术,也是射频加速器的重要发展方向之一,例如未来大型环形对撞机(CEPC)、上海硬X射线自由电子激光装置等,都将采用超导加速器系统,其中的射频超导技术是目前世界上正在研究和发展的关键前沿技术,在这些大型加速器里无一例外都采用射频超导加速腔来加速带电粒子,例如CEPC将采用650MHz超导椭球腔作为它的主要加速单元。一般来说,对于强流加速器束流功率比较高,射频超导腔
学位
江门中微子实验是目前世界上最大的液体闪烁体探测器。根据方案设计,实验的规模大,电子学通道数量多,数据量大,因此对后端数据获取系统提出严苛的要求。  在线软件系统是高能物理实验中数据获取系统的关键部分。它负责完成对整个数据获取系统的控制、管理、配置和信息监控任务,保障和协同数据流系统的正常稳定运行,进而实现实验物理数据的获取功能。  本论文主要论述了对江门中微子实验在线软件的研究工作。主要内容包括对
当前,高功率和高效率速调管的开发是粒子加速器功率源系统发展的最前沿技术之一。速调管主要由电子枪、高频互作用段、聚焦系统、输出窗和收集极等部分组成。其中输出窗具有功率输出和真空隔离的作用,是速调管实际运行中较易受损的关键部件之一,因而高功率输出窗的研制一直是高功率速调管的热点和难点。本论文以环形正负电子对撞机(CEPC)大工程项目为契机,首次在国内开展P波段兆瓦量级连续波高功率高效率速调管输出窗的研
2018年,中国科学院高能物理研究所正式发布了下一代大型粒子对撞机CEPC-SPPC的概念设计报告,确认了二期超级质子对撞机(SPPC)将采用100公里储存环、75-150TeV对撞能量方案,要求所用双孔径高场超导磁体的场强达到了12-24T。高场超导磁体具有运行电流高、储存能量大、价格昂贵以及维修困难等特点,因此对失超保护系统的要求更为苛刻,要求其对失超判断准确,保护及时可靠。本课题从高场超导磁
束流测量系统是现代同步辐射环形加速器中明亮的“眼睛”,是粒子加速器调试、优化和高质量稳定运行的保证。本论文在深度调研了国际上多个著名的同步辐射光源的基础上,总结和探讨各个光源中BPM信号处理器的设计方案特点以及未来的发展方向,并以高能同步辐射光源为设计和优化对象,开展了数字化BPM信号处理器的研制工作。  束流位置信号处理器中,前端射频调理电路的温漂效应、通道不一致性及系统噪声是影响束流位置测量精
现代粒子加速器的控制系统通常需要存储和管理大量的数据,例如装置各个系统运行中产生的实时数据,以及数以干计的各类设备元件在设计、采购、加工、安装时产生的静态数据等,这些数据对装置的稳定运行和调试维护起着至关重要的作用。随着粒子加速器装置规模越来越大,其复杂程度也在不断提升,粒子加速器产生的数据量也将显著增加,现有传统的数据存储和处理手段将不能满足应对海量数据的需求。因此,研究大型粒子加速器数据的存储
同步辐射光束线上存在的碳污染问题不仅影响光束线特别是软X光束线传输效率而且会降低光学元件使用寿命。目前解决碳污染问题主要途径是对已经污染的光学元件进行清洗或更换。已有大量实验研究表明碳污染的生成与真空镜箱的洁净度特别是腔壁表面的油分子数量有非常大的关系。本文目的是利用辉光放电对镜箱真空室壁进行清洗,获得更加洁净的真空室,力争从源头上减少光学元件碳污染的产生。论文主要包括如下内容:  建立了氩气氧气